JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

VERCATION: Precise Vulnerable Open-source

Software Version Identification based on Static
Analysis and LLM

Yiran Cheng*f, Ting Zhang*¥, Lwin Khin Shar*, Shouguo Yang®, Chaopeng Dong*f, David Lo¥, Shichao Lv*TY,
Zhigiang Shi*!, Limin Sun*f
* Beijing Key Laboratory of IOT Information Security Technology,
Institute of Information Engineering, Beijing, China
f School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
i Singapore Management University, Singapore
§ Zhongguancun Laboratory, Beijing, China
chengyiran @iie.ac.cn, tingzhang.2019@phdcs.smu.edu.sg, lkshar@smu.edu.sg, {yangshouguo,
dongchaopeng} @iie.ac.cn, davidlo@smu.edu.sg, {lvshichao, shizhigiang, sunlimin} @iie.ac.cn

Abstract—Open-source software (OSS) has experienced a surge
in popularity, attributed to its collaborative development model
and cost-effective nature. However, the adoption of specific
software versions in development projects may introduce security
risks when these versions bring along vulnerabilities. Current
methods of identifying vulnerable versions typically analyze and
extract the code features involved in vulnerability patches using
static analysis with pre-defined rules. They then use code clone
detection to identify the vulnerable versions. These methods are
hindered by imprecision due to (1) the exclusion of vulnerability-
irrelevant code in the analysis and (2) the inadequacy of code
clone detection. This paper presents VERCATION, an approach
designed to identify vulnerable versions of OSS written in C/C++.
VERCATION combines program slicing with a Large Language
Model (LLM) to identify vulnerability-relevant code from vulner-
ability patches. It then backtracks historical commits to gather
previous modifications of identified vulnerability-relevant code.
We propose code clone detection based on expanded and normal-
ized ASTs to compare the differences between pre-modification
and post-modification code, thereby locating the vulnerability-
introducing commit (vic) and enabling the identification of the
vulnerable versions between the vulnerability-fixing commit and
the vic. We curate a dataset linking 122 OSS vulnerabilities
and 1,211 versions to evaluate VERCATION. On this dataset,
our approach achieves an F1 score of 93.1%, outperforming
current state-of-the-art methods. More importantly, VERCATION
detected 202 incorrect vulnerable OSS versions in NVD reports.

Index Terms—Open-source software security, Vulnerable ver-
sion, Large Language Model.

I. INTRODUCTION

Open-source software (OSS) has become increasingly pop-
ular in recent years, thanks to its collaboration and cost-
effectiveness. In the rapidly evolving world of OSS, numerous
versions exist due to continuous evolution. While OSS plays
a pivotal role in expediting software development, the integra-
tion of particular software versions in development projects

9 Shichao Lv and Ting Zhang are the corresponding authors.

can pose security risks, as these versions may contain vul-
nerabilities. Therefore, having a comprehensive knowledge of
vulnerable versions of OSS becomes imperative for software
developers.

Public vulnerability repositories collect vulnerability reports
of software products and disseminate information regarding
the affected versions of the software. The National Vulnera-
bility Database (NVD) [1], recognized as the largest public
vulnerability database, employs the Common Platform Enu-
meration (CPE) format to store information about vulnerable
versions. However, the NVD often encompasses all versions
before the reported vulnerability or designates only the ver-
sions mentioned in the report as vulnerable. For instance,
CVE-2018-5785 reported only version v2.3.0 as vulnerable
in CPE [2]. Yet, upon manual validation, it was uncovered
that versions v2.1.1 to v2.3.0 are all susceptible to the vulner-
ability. Recent research [3]-[6] indicates that incomplete and
incorrect information about vulnerable versions is prevalent
in such reports. Therefore, there is a need for an automated
method that can more accurately identify vulnerable versions
of released OSS vulnerabilities.

Two limitations of current approaches. The approaches for
confirming vulnerabilities involve utilizing Proof of Concept
(PoC) to trigger the vulnerability. PoC triggers vulnerabilities
through dynamic execution, offering conclusive evidence of
their existence. However, executing a PoC for each software
version is a time-intensive process that requires meticulous
environment setup. Additionally, the PoC input may not
be universal across all vulnerable versions [7]. Therefore,
current researches use static analysis to identify vulnerable
versions [8]-[15]. These methods typically consist of two
steps: extracting vulnerability features from code snippets and
identifying vulnerable versions through code clone detection
of these vulnerability features. Existing methods typically
extract vulnerability features using static analysis in which
vulnerability patterns are pre-defined by human experts: some

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

consider data and control dependencies from the patched
code [12], [13]; some consider using hashes of entire func-
tions [16]; and some consider only the patch code [14], [17].
These methods generally produce many false positives or false
negatives because of the inherently imprecise nature of static
analysis and the incompleteness of pre-defined vulnerability
patterns, making it difficult to distinguish vulnerability-rele-
vant code from irrelevant code (@). The majority of the meth-
ods for code clone detection are function-level approaches [18]
whereas real-world vulnerability logic is typically confined
to (often a few) statements only. There are statement-level
code clone detection methods but they are limited to textual
signatures (such as Levenshtein algorithm [17] and hash value
comparison [12], [16]), without taking into account the code
changes that reorganize code while preserving its functionality.
These limitations hinder the effectiveness of vulnerability
detection in practical scenarios ().

These limitations primarily stem from the lack of reasoning
about the context of the vulnerable code being analyzed.
Recently, large language models (LLMs) have shown re-
markable performance in various code-related tasks, including
code generation [19], [20] and code summarization [21], [22].
This strong performance demonstrates LLMs’ capability to
recognize code patterns and correlations at both syntactic and
semantic levels. As such, we aim to address the first limitation
by leveraging the power of LLMs. Essentially, we hypothesize
that LLMs can be leveraged to address the imprecision of static
analysis and the incompleteness of human-defined vulnera-
bility patterns (@). However, there is a challenge of Prompt
engineering in leveraging an LLM in our problem domain. The
design of prompts is pivotal in directing the LLM to produce
desired responses. In vulnerability comprehension tasks, well-
crafted prompts should encompass the code for analysis and
offer a lucid description of the analysis objectives. However, in
the case of current LLMs, merely providing all the vulnerable
function codes and directly instructing vulnerability analysis
often yields suboptimal outcomes. When the function code is
too long, the LLM’s ability to understand the relationships
between distant parts of the context may diminish [23], [24].
Hence, formulating prompts to guide LLMs in generating
desired vulnerability logic analyses poses a challenge.

Due to variations in programming styles, variable naming,
and structural differences, code clones may manifest differ-
ent changes. Furthermore, developers often streamline and
refactor code through method outlining. Such code structural
changes often mislead code clone detection-based approaches
to incorrectly identify the vulnerable versions. Furthermore,
prior studies [25], [26] found that vulnerabilities can often
be localized to a few key lines, making file- and function-
level vulnerability detection overly coarse-grained. The lim-
itation motivated us to propose a statement-level code clone
detection approach to address the second limitation of current
approaches ().

Our approach. We propose VERCATION (Vulnerable version
identification), a novel method to identify vulnerable versions
of open-source C/C++ software utilizing a symbiotic com-
bination of static analysis, LLM, and code clone detection.

Given a vulnerability fixing commit (vfc), VERCATION applies
program slicing to extract vulnerability-related statements as
vulnerability features, leverages the capability of LLM in code
understanding to refine the extracted features, and performs
semantic-level clone detection on vulnerability features in
code changes. This hybrid method effectively overcomes the
practical limitations of existing approaches. More specifically,

VERCATION automatically preprocess the fixing commits

and construct prompts based on the Few-shot and Chain-of-

Thought (CoT) strategies, enabling the LLM to reason with

the vulnerability and identify the most probable vulnerable

statements as features. Subsequently, VERCATION traces ear-
lier modifications of vulnerability features and applies a clone
detection method based on expanded Abstract Syntax Trees

(ASTs) to pinpoint the vulnerability-introducing commit vic.

Finally, VERCATION identifies vulnerable versions between

the vic and vfc.

Evaluation. We meticulously curated a ground-truth dataset

for evaluation, encompassing 12 commonly used OSS projects,

122 Common Vulnerabilities and Exposures (CVEs), and a

total of 1,211 OSS versions. This dataset comprised every

patch released through Git with respect to those 122 CVEs.

The first author engaged in manual vulnerability validation

with the help of public Proof-of-Concept (PoC), meticulously

labeling the presence of vulnerabilities across software ver-
sions. On this dataset, VERCATION demonstrated both higher
precision (91.8%) and recall (94.5%) compared to state-of-the-

art methods (SOTAs), including V-SZZ [17], VOFinder [16],

V1SCAN [27], VERJava [28] and Vision [29]. We conducted

an ablation study using three different LLMs (GPT-4 [30],

CodeLlama [31], and DeepSeek-V3 [32]) to evaluate their

vulnerability comprehension capabilities. Utilizing the Few-

shot and CoT combined strategy, DeepSeek-V3 achieved an F1
score of 93.1%, significantly improving the F1 score of Joern
parser [33] by 92.8%, a commonly-used static analysis tool.

More importantly, during the evaluation, we found 202 version

errors in the NVD reports. VERCATION has also been shown

to be efficient, analyzing each vulnerability on an average of

28.61 seconds.

Contributions. The main contributions of this paper are as

follows:

o Unlike previous efforts that heavily relied on pre-defined
patterns of static analysis tools, we present VERCATION,
the first framework to integrate the reasoning capability of
LLM for vulnerable version identification tasks, through the
use of a multi-strategy universal prompt engineering.

« VERCATION presents a solution based on expanded and nor-
malized AST to address the structural modifications in the
clone detection challenge, which was designed for refactor-
ing commit identification during vulnerability backtrack.

e We curated a dataset including 122 published CVEs con-
taining 1,211 versions. This extensive dataset was curated
across 12 OSS projects and underwent meticulous labeling
through a combination of PoC input validation and manual
verification.

« We have implemented a prototype of our approach and
assessed its performance using our dataset, achieving the
F1 score of 93.1%, improving SOTAs by 8.1% to 108.7%.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

We also evaluated three contrasting LLMs — a commercial,
closed model (GPT-4) and open models (CodeLlama and
DeepSeek-V3) — in our approach and reported that they
achieved similar performances in our context when appro-
priate prompting strategies were applied. More importantly,
by applying our approach, we have detected 202 incorrect
vulnerable OSS versions in NVD reports.
The source code of VERCATION and our curated dataset are
publicly available at https://github.com/Veronica-L/Vercation.

II. BACKGROUND AND MOTIVATION

In this section, we clarify the target problem, introduce the
LLM and discuss the motivation with two examples.

A. Problem Statement

Commits serve as comprehensive records of OSS develop-
ment, functioning as vital checkpoints for tracking the chrono-
logical evolution of code changes. They enable developers
to revisit specific points on a particular date or time. This
paper centers on vulnerable version identification in OSS
vulnerabilities. Within the development of an OSS, certain
commits introduce vulnerabilities, referred to as vulnerability-
introducing commits (vic), which are later fixed in vulnerabil-
ity fixing commits (vfc). The vulnerable version analysis aims
to pinpoint the vic, allowing us to assess which versions are
susceptible to the vulnerabilities.

We posit that the initial function undergoes modification
by a vic and transforms into a vulnerable function F),. There
probably exists some subsequent commits such as feature-
adding commits and refactoring commits to optimize the
function code, which is denoted as F,,.. Ultimately, software
analysts discover the vulnerability and fix the code in the vfc,
resulting in the final function Fy. An illustrative timeline is
presented in Figure 1.

Initial Function
Function F, Fyr Ff Timeline
i P P

Timeline
Vulnerability Intermediate Vulnerability

Introducing Commit Commit(s) Fixng Commit

Fig. 1: Function Timeline from Vulnerability Introduction to
Vulnerability Fixing.

B. Large Language Model

Large Language Models (LLMs) have revolutionized nat-
ural language processing and have demonstrated remarkable
capabilities in various code-related tasks. These models, ex-
tensively trained on vast amounts of text and code repositories,
can understand and generate human-like text and code. Recent
advancements in LLMs, such as GPT-3 [34], GPT-4 [30],
DeepSeek [35] and CodeLlama [31], have demonstrated im-
pressive performance in code generation [19], [20], code
summarization [21], [22] and program repair [36], [37].

The success of LLMs in code-related tasks can be attributed
to their ability to capture complex patterns and contextual

relationships in code [31], [38]. Through Pattern Recognition,
LLMs learn correlations and patterns between code snippets
from large-scale training data, enabling them to identify code
with different syntax but similar functionality. Additionally,
LLMs can infer the purpose of code snippets based on their
context. This makes them particularly suitable for tasks that
require a deep understanding of code structure and functional-
ity like vulnerability detection. However, the effectiveness of
LLM:s heavily depends on the quality of prompts used to guide
their responses. Prompt engineering, the process of designing
effective prompts, has become a crucial area of research in
leveraging LLMs for specific tasks [39], [40].

Despite their reasoning capabilities, LLMs also face chal-
lenges in code analysis tasks such as handling very long code
sequences. Therefore, in our work, instead of blindly applying
LLM as a standalone tool, we first use static analysis to
extract candidate vulnerability-related codes and then leverage
the semantic capturing capabilities of LLMs to improve the
accuracy of extracted codes.

C. Motivating Examples

We present two examples of disclosed vulnerable code in
two distinct scenarios, which motivate our work. Both of
these vulnerabilities have now been effectively resolved by the
development team. The key points we wish to underscore are
as follows: 1) The significance of understanding vulnerability
behavior in the process of discovering vic. 2) The challenge
of accurately pinpointing vic due to the code structural modi-
fications introduced by the intermediate commits.

Example 1) A vulnerability in FFmpeg (CVE-2017-
14169 [41]) shows the limitation of existing approaches in
terms of capturing vulnerability logic. The code snippet of
vfc is shown in Listing 1. A sanitizing check was added at
Line 13 for the item_num. Without this check, a remote
attacker can make a crafted file with a large item_num field
such as Oxfffff£ff, causing a buffer overflow issue in the
avio_read function at Line 25 and potentially leads the
application to exhibit incorrect behavior or crash.

V-SZZ [17] assumes the deletion lines in the security patch
as vulnerable codes and the basic idea of it is to pinpoint the
earliest commit introducing the deletion lines as vic. However,
vulnerability logic is composed of various vulnerable codes,
such as Lines 21 and 25 in Listing 1. V-SZZ only considers
tracing back deleted line (Line 12) and overlooks the real
vulnerability behavior, leading to incorrect identification of
vic. VOFinder [16] attempts to identify vulnerable versions
using code clone detection. It generates hash values for the
entire vulnerability function and identifies code clones accord-
ing to the distance value of two hashes. This method may still
introduce excessive vulnerability-unrelated features due to the
inclusion of “entire function”.

Observation. Identification of vulnerable versions is hindered
by the challenge of comprehending vulnerability logic from
the security patch. LLMs can grasp contextual code semantics
and achieve human-like understanding in code-related tasks,
eliminating the reliance on predefined patterns and rules
utilized by traditional static analysis and automated tools.

https://github.com/Veronica-L/Vercation

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

I diff --git a/libavformat/mxfdec.c b/libavformat/
mxfdec.c
@@ —-493,11 +493,11 @Q static int mxf_read\
_primer_pack
static int mxf_read_primer_ pack (void xarg,
AVIOContext #*pb, int tag, int size, UID uid,
int64_t klv_offset)

MXFContext *mxf = arg;

6 int item_num = avio_rb32 (pb);
7 int item_len = avio_rb32 (pb);
8 if (item_len != 18) {

9 avpriv_request_sample (pb, "Primer pack
item length %d", item_len);

10 return AVERROR_PATCHWELCOME;

1 }

if (item_num > 65536) {

if (item_num > 65536 || item_num < 0) {

14 av_log(mxf->fc, AV_LOG_ERROR, "item _num %
d is too large\n", item_num);
15 return AVERROR_INVALIDDATA;
16 }
1 if (mxf->local_tags)
18 av_log(mxf->fc, AV_LOG_VERBOSE,
primer packs\n");
19 av_free (mxf->local_tags);
20 mxf->local_tags_count = 0;
21 mxf->local_tags = av_calloc (item_num,
item_len);
if (!mxf->local_tags)
return AVERROR (ENOMEM) ;
24 mxf->local_tags_count = item_num;
avio_read(pb, mxf->local_tags, item_num=
item_len);
26 return 0;

Listing 1: Motivating Example of CVE-2017-14169.

"Multiple

I diff --git a/libavformat/avidec.c b/libavformat/
avidec.c
@@ -350,8 +350,7 @@ static void avi_read_nikon/(
AVFormatContext s, uint64_t end)
uintl6_t tag = avio_rll6 (s—>pb);
uintl6_t size = avio_rll6 (s—>pb);
5 const char xname = NULL;
6 char buffer[64] = { 0 };

7 — 1if (avio_tell(s->pb) + size > tag_end)

size = tag_end - avio_tell (s->pb);
size = FFMIN(size,
(s=>pb)) ;

1 size —-= avio_read(s->pb, buffer,
sizeof (buffer) - 1));

tag_end - avio_tell

FFMIN (size,

4 /*The definition of method FFMIN in libavutil/
common .h«*/
15 #define FFMIN(a, b) ((a)>(b)?(b):(a))

Listing 2: Motivating Example of Code Refactoring Commit.

Through the integration with an LLM, we can automate vul-
nerability analysis, enhancing the efficiency of our approach.

Example 2) After extracting the vulnerability logic and its
corresponding vulnerable statements (S,), we can locate the
vic by backtracing the code changes of .S, in the previous com-
mit, thereby identifying the vulnerable versions. V-SZZ [17]
identifies code clones before and after such code changes by
the edit distance. However, refactoring commits, prevalent in
OSS development, aim to optimize and reorganize code while
preserving its functionality [42], [43].

A refactoring commit in FFmpeg (Listing 2) demonstrates
how structural changes caused by method encapsulation mis-
lead existing detection methods. In this commit, developers
extracted the code with if condition structure into a new
method FFMIN () to improve code modularity. While this
refactoring preserves functionality, it introduces significant
syntactic divergence between the original code (Lines 7-8) and
the restructured code (Lines 9-10).

Traditional tools like V-SZZ [17] consider edit distance as
the metric to detect code clones. The edit distance between the
original and refactored code drops to 48% due to the method
outlining, causing V-SZZ to incorrectly flag this commit as the
vulnerability-introducing commit (vic). Other approaches like
ReDeBug [14] and VOFinder [16] also fail to recognize the
equivalence between inline logic and encapsulated methods,
as their coarse pattern matching ignores structural abstraction.

Observation. This case highlights the structural refactoring
in OSS development and the limitations of existing clone
detection techniques. VERCATION addresses this by expanding
function calls during AST generation—inlining the FFMIN ()
method body to reconstruct the original logic. Combined
with AST normalization, this allows VERCATION to detect
code logic equivalence despite structural variations, accurately
tracing the vic through refactored commits.

III. DESIGN OF VERCATION

We propose VERCATION, an end-to-end automated ap-
proach designed for vulnerable version identification in OSS
vulnerabilities. The high-level workflow is illustrated in Fig-
ure 2. VERCATION consists of three phases: Vulnerable code
extraction (P1), Code clone detection (P2) and Vulnerable
version range determination (P3).

In P1, VERCATION combines program slicing and LLM to
identify and extract vulnerability-related program statements
in a precise manner. Specifically, we utilize the patch code
as a slicing criterion to extract dangerous flows, defined
as program statements that directly or indirectly affect the
variables or expressions at the patch code. To mitigate the
risk of including statements unrelated to the vulnerability
(false positives), we employ prompt engineering with few-shot
and Chain-of-Thought (CoT) strategies, empowering LLM to
reason with the vulnerability based on the extracted dangerous
flows and accurately extract vulnerability-related statements.

In P2, VERCATION retraces historical commits to collect
previous modifications of vulnerable statements. For each
statement before and after modification, VERCATION expands
the functions within the statement, generates ASTs, and nor-
malizes them. Then we utilize an in-order traversal algorithm
to compare the AST before and after the modification as
code similarity, which determines if the commit is the initial
introduction of the vulnerable statements.

In P3, VERCATION identifies the affected versions based on
the CVE’s vfc and the corresponding vic.

To note, VERCATION supports patches that span multi-
ple functions and files. In P1, we extract dangerous flows
from each affected function independently, then combine all
extracted dangerous flows as input to the LLM for unified

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

P1: Vulnerable Code Extraction

P2: Code Clone Detection

1

git blame Vulnerability |
—_— s . . 3
Introducing Commit 1

I

r W

Less than threshald

P3: Vulnerable Version |
Range Determination

p————

Program Slicing

‘ Method Expanding]

Dangerbus Flow
v

v

Vulnerable

v

[AST Normalization }

Version Tags

| Large Language Models |

1
1
1
1
1
1
1
1
|
i ‘ Prompt Construction I
1
1
1
1
1
1
1
1
1
1

Vulnerable Statements

In—ordeiTraversal

Code Similarity L

Fig. 2: VERCATION Workflow.

vulnerability logic analysis. In P2, we perform a backtrack
analysis for vulnerable statements from all affected functions.

A. Vulnerable Code Extraction

Taking a vfc as an input, VERCATION identifies and extracts
program statements related to a vulnerability in three steps, as
explained in the following subsections respectively.

1) Dangerous Flow Extraction: Firstly, VERCATION con-
ducts program slicing [44] on the source code to extract crucial
program statements that may contribute to the vulnerability,
which we call dangerous flow. The slicing is based on the
following criteria: deleted/added statements and patch-related
variables. Building upon existing techniques [12], [13], [15],
we execute program slicing on the program dependency graph
of the patched function according to the slicing criteria. We
performed slicing in two directions: backward and forward.
Backward slicing is used to trace the source of patch-related
variables and forward slicing is used to find the trigger
behavior that causes the vulnerability. For different statement
types, we customize different slicing rules:

o Assignment statement affects the data-flow values of vulner-
ability behavior. We conduct normal slicing in the assign-
ment statements and the assigned variables should be added
to the slicing criterion. For example, if we take item_num
of Line 12 and 13 in Listing 1 as slicing criterion and
perform forward slicing, Line 21 and 24 are included.

o Conditional statement affects the reaching condition of the
vulnerability trigger. We aim to slice the condition statement
that takes the variables of slicing criterion as condition
check, and the result also includes all the subsequent state-
ments of condition statement (e.g., subsequent statement
Line 14-15 of condition statement Line 13, subsequent
statement Line 23 of condition statement Line 22).

o Function call statement. If the function call statement’s
parameters contain patch-related variables included in the
slicing criterion, we conduct slicing on the statement.

e Return statement. There is no need for forward slicing
because there is no dependency between the return value and
the statements following the return statement. For example,

there is no need for forward slicing on Line 15 and 23 in

Listing 1.

2) Dangerous Flow-based Prompt Construction: Secondly,
we leverage an LLM to refine these dangerous flows further
since the dangerous flows extracted in the above step (program
slicing) may include false positives (unrelated to vulnerability
logic). We explore prompting strategies to assist LLM in the
vulnerability comprehension task and in refining vulnerable
statements from the dangerous flows extracted through pro-
gram slicing. It is important to note that the LLM’s role is to
perform code understanding and vulnerability logic analysis
rather than to recall specific CVE information from its train-
ing data. Most vulnerability reports do not provide detailed
vulnerability logic analysis or identify specific vulnerable
code statements [45], where the LLM’s semantic analysis
capabilities become essential.

Our method utilizes an LLM that supports interaction with
system prompts and user prompts. The system prompt sets the
role and background of the LLM. The user prompt consists of
specific instructions issued by the user. At the beginning of the
system prompt, we assign the role of a security researcher to
the model with the statement, ““You are a security researcher an
expert in detecting security vulnerabilities,” and indicate that
we will provide the CVE information and dangerous flow. The
prompt also concludes with a declaration of the fixed output
format expected for the model’s response. The content of
the user prompt includes detailed CVE information including
CVE ID, CWE ID, CVE description, and dangerous flow
extracted from program slicing. The extracted dangerous flows
are formatted with line numbers prefixed to each statement
when constructing prompts, such as “4442 total_size
+=msec—->size; 4444 stash->info_ptr_memory =
(bfd_byte %) bfd _malloc (total_size);”.

Additionally, we use the following prompt strategies to
optimize the performance of LLM:

(i) Few-shot prompting is a technique where we provide the
LLM with a small number of examples demonstrating
the desired task before presenting the actual problem.
We carefully select two examples from publicly avail-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

able and verified CVE cases. To avoid data leakage, the
cases are not included in our experimental dataset. The
selection of examples follows specific criteria: (1) hav-
ing complete and clear CVE descriptions, (2) containing
explicit vulnerability fix code, and (3) featuring easily
understandable vulnerability logic. These examples were
created and reviewed through a systematic process:
analyzing CVE descriptions and patch code, extracting
key vulnerability logic, annotating relevant vulnerable
statements, and writing clear vulnerability analysis ex-
planations. The examples were created by the first author
and reviewed by the fourth and fifth authors. To ensure
experimental reproducibility, we maintain a fixed set
of examples throughout all experiments. Each example
consists of: a) A sample CVE ID, CWE ID and CVE
description, b) Corresponding dangerous flow extracted
from program slicing, ¢) The expected vulnerability
logic analysis, and d) The correctly identified vulnerable
statements.

(i1) Chain-of-thought (CoT) prompting provides LLM with
a prompt that encourages it to generate intermediate
reasoning steps before arriving at a final answer [46]. We
prompt the model to “Please analyze the code following
these steps: 1. Explain the vulnerability logic from the
code 2. Indicate which statements are relevant to the
vulnerability logic”. This structured format naturally
implements a chain of thought - requiring the model to
first reason about and explain the vulnerability logic (the
reasoning step) before identifying the specific vulnerable
lines (the identification step). This approach identifies
the vulnerable statements using the code understanding
capability of LLM rather than superficial pattern match-
ing. Table 3 shows our prompting template, and we take
the vulnerable statements from the response as the input
for the next step.

B. Code Clone Detection

Given the vulnerable statements S, of a fixing commit
(extracted in Section III-A), VERCATION performs a commit
backtrack to identify which previous commit introduced S,
by tracing the history of earlier modifications. To achieve this,
VERCATION employs the git blame command to backtrack
through previous commits. Figure 4 illustrates our code clone
detection process. For each intermediate commit between the
vfc and the potential vic, we compare the post-modification
statements (S) with the pre-modification statements (S”) using
two levels of similarity detection: a quick syntactic check
using edit distance and a deeper structural analysis using
ASTs. The results from both comparisons, combined with
statement weights assigned in Section III-B3, contribute to a
final similarity score. If this score is below the threshold 63,
we identify the commit as the vic. Otherwise, we continue the
backtrack process.

1) Syntactic Similarity Analysis: First, we use line map-
ping to pre-filter highly similar lines in S’ with S, where
S C S,. If such lines are found, it indicates that the
commit is not the first to introduce S,. We use the edit

You are a security researcher and expert in detecting security vulnerabilities.
I will provide you with a CVE ID, CWE ID, CVE description, and dangerous
code.

[Few—-shot]

Example 1:

Input:

CVE ID: CVE-2019-17451

CWE ID: CWE-190 Integer Overflow or Wraparound
Description: An issue was discovered in the...

Dangerous Code: <dangerous code snippet>

Output:

Vulnerability logic:

1. In the original code, there is no check for potential integer overflow...
2. If total_size overflows to a smaller value, it may lead to...
Vulnerable lines: [4442, 4444, 4459, 4460, 4461]

Example 2: ...

[Chain-of-thought]

Please analyze the code following these steps:

1. Explain the vulnerability logic from the code.

2. Indicate which statements are relevant to the vulnerability logic.

Provide a response only in the following format:

vulnerability logic: <text>

vulnerable lines : <Line number List>

Do not include the added line number (with +) and anything else in response.

Now, please analyze the following case:
<CVE ID>,<CWE ID>,<CVE description> and <dangerous flows>

Fig. 3: The LLM Prompt Structure.

distance to calculate line similarity Similarity 4 (5%, S;), where
Sl e S and S; € S. We set a similarity threshold ¥;;
if Similarity 4 (S}, S;) > 1, we continue to backtrack the
previous commit. If Similarity 4 (S}, S;) < 91, we proceed to
the more detailed structural analysis. To note, when encoun-
tering merge commits with multiple parents during backtrack,
we traverse each parent path independently and select the
chronologically earliest vic across all branches.

2) Structural Similarity Analysis: As exemplified in Exam-
ple 2 of Section II-C, Lines 5-6 (deleted pre-commit lines) and
7-8 (added line of post-commit, e.g., included in S,) exhibit
high similarity in code behavior. However, previous research
failed to identify this high similarity through simple line
mapping, resulting in the commit (version) being erroneously
labeled as an introducing commit (vulnerable version). We
propose a fine-grained similarity comparison method at the
AST-level to address this limitation. AST is a tree representa-
tion of code that preserves well-defined components of state-
ments, explicit statement order and the execution logic [47].
Method Expansion. Due to code refactoring often outlining
code into a new method, as shown in Listing 2, the codes in
Lines 7-8 are outlined into methods FFMIN. The standard AST
comparison treats the if-condition (Lines 7-8) as completely
different from the FFMIN function call, resulting in a false
vulnerability identification. Therefore, we utilize the inline
technique to expand the method during AST generation to
gather more code behavior within the statements. This involves
obtaining the method definition at the callsite and expanding
the method body inline, resulting in a more comprehensive
code representation. We get the AST for the target file using
Clang without performing actual compilation. Furthermore,
through recursive retrieval of line numbers for sub-ASTs, we

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

Vulnerable Statement (S,,)

Intermediate Commit(s)

Code Clone Detection

[+S, = 31’ } Edit Distance I
Backtrace (Similarity,)
{ s, S
S S 15 y AST-based Approach
[45 “Sm |} (Similaritys) |
Post-modification Pre-modification
>0,

similarity_score =
Ngim_aXweight_v +

The commit | <¥;

Ngim pXweight_d

_ If the weight type
Nsim_a+_ 1 of S; is weight_v

—

is vic!

Niim_qXweight_v +

Niim_pXweight_d

Fig. 4: Overview of Code Clone

can locate the sub-AST corresponding to .S,.

AST Normalization. To address structural variations arising
from different developer coding styles, it is essential to nor-
malize the AST. This process mitigates inconsistencies and
reduces analytical noise by standardizing code representations.
AST normalization involves conditional structure normaliza-
tion, loop structure normalization, and relational operation
normalization.

can be implemented by if-
We normalize the structure

of switch-case: switch (expression) {case
valuel: statementl; break; case valueZ:
statement?2; break; default statement3;}
into a if-else structure: if (exp valuel)
statementl; else if (exp == value2)
statement2; else statement3.

o Loop structure can be represented as while, do-while and for
structures, we normalize all the loop structure to while [48].
The for structure is for (initialize; condition;
increment) {statements;}, we transform it into
while structure: initialize; while (condition)
{statements; increment}.

e Relational operation include commutative and noncom-
mutative operation. Commutative relational operation (i.e.,
+, =, &&) refers to the operation where commutate the
operands does not change the operation semantics. We
normalize the two operands (left and right child nodes)
of the operation (parent nodes) by alphabetical order. For
example, we transform b + a (b is the left child node) to
a + b (a is the left child node). Noncommutative relational
operation (i.e., >, <=) will change the operation semantic
when commutating the operands, we normalize them by
predefined rules. For example, we transform b < a to a > b
(normalize operation < to >).

e Conditional structure
else and switch-case.

AST Similarity. Ultimately, we utilize an in-order traversal
to ascertain whether the commit introduces S by comparing
the AST similarity of S; and S.. First, we perform an in-order
traversal of the ASTs for S; and S;, converting the results into
sequences Sq; and S’q;. Then, we calculate the edit distance
between the two sequences as their AST-based similarity

No . +=1 / If the weight type
SL of S; is weight_d

Detection Process in VERCATION.

Similarity 5(Sqi, S'¢;). We set a similarity threshold 95, and
if Similarity5(S¢;, S"q;) > 92, S; and S} are considered
to be AST-based similar. If Similarityz(Sq;, S'q;) < Vs,
it indicates that there is no statement similar to S; in the
pre-modification commit. During this process, we classify a
commit as a refactoring commit when it exhibits low edit-
distance similarity (Similarity 4(S;, S/) < 1) but high AST-
based similarity (Similarity 5(Sq;, S'q;) > ¥2). This indicates
that while the code structure has been significantly modified,
the underlying functionality remains unchanged.

3) Statement Weight Allocation: Not all statements identi-
fied by an LLM contribute equally to vulnerability in trig-
gering the exploit. To address this, we propose a weight
allocation strategy that prioritizes vulnerable statements based
on their invocation of known sensitive functions. The core
premise is that the presence of specific, high-risk functions
within a statement is a strong indicator of its criticality. We
followed a systematic process to identify and categorize these
sensitive functions. Starting with a comprehensive review of
previous studies [49], [50], we collected existing sensitive
function enumerations. We then conducted a preliminary study
of common C/C++ vulnerabilities to identify the most fre-
quent vulnerability categories, such as buffer overflow, inte-
ger overflow, and use-after-free, and examined the functions
commonly involved in known vulnerabilities for each type.
This process involved three authors with security expertise: the
first author proposed the initial categorization, which was then
independently reviewed and validated by the fourth and fifth
authors, with any discrepancies resolved through discussion.
The result is the pre-defined table (Table I) of sensitive
functions for various vulnerability types. We analyze each
vulnerable statement extracted by the LLM. If a statement
contains a direct call to any function listed in our sensitive
function table, it is assigned a higher weight, marking it as a
probable vulnerability trigger. For instance, in Listing 1, Lines
21 and 25 are critical trigger lines.

Furthermore, we conduct an inter-procedural analysis to
identify customized functions that serve as variants of canon-
ical sensitive functions. For instance, the av_calloc func-
tion on Line 21 is a variant of the calloc function. To
discern whether the customized function F contains sensitive

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

TABLE I: Sensitive Functions for Some Vulnerability Types.

Vulnerability Type Sensitive Function

strcpy, strncpy, memcpy, memset, read,

Buffer overflow .
write, gets, gets_s, strcat

Integer overflow add, multiple, bit-shifting, memcpy

Null pointer derefrence malloc, calloc, realloc, strdup

Pointer out-of-bounds access memcpy, memmove

Use after free free, malloc, calloc

Format string sprintf, printf, scanf

Arbitrary command execution fopen, popen, system

functions, we first analyze the definition and implementation
code of function F, then check if F’s function body calls
any sensitive functions from Table I. If such call relationships
are found, F is also identified as a sensitive function. Taking
Listing 1 as an example, considering this is an overflow-type
vulnerability, we recognize the av_calloc in Line 21 and
avio_read function in line 25 as sensitive functions.

Parameters. There are two parameters for the weight alloca-
tion of statements, i.e., Wsensitive and Wyase, that could affect
the effectiveness of VERCATION: 1) Wy, is the base weight
for initializing the weights of all statements. 2) Wepsitive 18
the weight for the statements containing sensitive functions.
We set Weensitive = 2 X Whases Wease = 1.0, the detailed
weighting configuration experiment is in Section V-B.

4) Code Clone Determination: We calculate the simi-
larity_score for each code modification of the previous
commit with the backtrack. We set a threshold 3, if
similarity_score < 13, we determine that there is no code
clone between the pre-modification code of this previous com-
mit and the vulnerable statements, thus confirming that this
commit introduced the vulnerability. Otherwise, we proceed
with the commit backtrack process.

stm_a X Wsensitive + STM_b X Wyase
a X Wsensitive + b x Wbase

where, Wensitive and Wy, s are predefined weights assigned
to different types of statements; a and b are the total counts
of the statements in S, corresponding to these weight types;
sim_a and sim_b are the counts of statements that were found
to be similar, either through syntactic or structural analysis.

stmilarity_score =

C. Vulnerable Version Range Determination

To precisely determine the range of software versions af-
fected by a vulnerability, we employ a methodology based on
the principle of commit reachability. The core premise is that
a vulnerability, once introduced in a specific vic, is propagated
to all subsequent commits in its lineage until it is fixed by a
vfc.

The basis for our analysis is the concept of reachability,
where a commit A is considered reachable from another
commit B, if commit A is an ancestor of commit B in the
project’s commit graph [17]. As version tags are essentially

pointers to specific commits, they inherit the reachability
properties of the commits they represent. This allows us to map
the vulnerability’s presence from the commit level to software
versions.

Our methodology formally defines the set of vulnerable
versions (V,,) as follows: First, we identify V;, the set of all
version tags reachable from vic. Second, we identify V7, the set
of all version tags reachable from vfc. The vulnerable version
set V, is then derived from the set difference between these
two sets: V,, = V; — Vy.

We illustrate the procedure by the case of
CVE-2021-20294 in the Binutils project [51]. For
this vulnerability, the set of versions containing the vic is
[binutils—-2_35, binutils—-2_42], while the set of
patched versions containing the vfc is [binutils-2_36,
binutils—-2_42], with binutils—-2_42 being the latest
version of the Binutils project. Therefore, we consider the
version tags [binutils-2_35, binutils-2_36) as
vulnerable. This notation signifies a range that includes
binutils—-2_35 but excludes binutils-2_36.

IV. EXPERIMENTAL SETUP
A. Dataset

With confirmation from the author of V-SZZ, it is estab-
lished that V-SZZ assumes the deleted lines in the vfc as
vulnerable codes and manually labels the first introduction
of deleted lines in a vfc as the vic to construct the dataset.
However, as mentioned in Section II-C, deleted lines cannot
fully capture the vulnerability logic. Additionally, it cannot be
guaranteed that the identified software version will necessarily
exhibit the vulnerability. Meanwhile, V-SZZ excludes the vfcs
that only contain added lines of code in their vulnerability
selection, as the SZZ algorithm relies on tracking deleted
lines of code to locate vic and thus cannot handle such cases.
Therefore, we need to construct a ground-truth dataset with
labeled vulnerable versions or non-vulnerable versions of OSS,
which are verified by a public PoC.

Vulnerabilities. To build a reliable evaluation dataset, we
formulate four vulnerability selection criteria: 1) The vulner-
ability must be a CVE reported in an OSS project; 2) The
vulnerability must have publicly available PoCs and patches;
3) The PoC must be reproducible across different versions
of the OSS and 4) The OSS must have a certain number of
versions for comprehensive analysis. Based on the selection
criteria, we established a dataset comprising 122 publicly dis-
closed CVEs associated with public PoC and patches, spanning
12 prevalent OSS, as detailed in Table II. The published date
of these CVEs from 2016 to 2025. Meanwhile, the collected
vulnerabilities cover 13 common CWE types. Some vulnera-
bilities are classified into multiple CWESs. For example, CVE-
2023-1579 belongs to both CWE-119 (Improper Restriction of
Operations within the Bounds of a Memory Buffer) and CWE-
787 (Out-of-bounds Write). Among the dataset, vulnerabilities
belonging to CWE-787 (Out-of-bounds Write) are the most
numerous, accounting for 20.27%.

Patches. We acquired security patches by crawling vfc from
the OSS Git repositories. In total, the vfcs cover 2,287 modifi-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

TABLE II: Ground-truth Dataset Overview.

IDX Name #Version #CVE Domain

1 Binutils 157 18 Programming tools

2 cJSON 48 3 JSON parser

3 FFmpeg 405 31 Multimedia processing
4 Jasper 99 12 Image coding toolkit
5 Libarchive 51 10 Streaming processing
6 Libcaca 7 3 Graphics library

7 Liblouis 69 6 Braille translator

8 Libming 14 9 Flash library

9 Libtiff 78 7 Image tools

10 Libxml2 233 12 XML toolkit

11 OpenJPEG 25 8 Image codec

12 Pcre2 25 3 Regular expression engine
Total 1,211 122 -

cation lines containing 1,532 insertion lines and 755 deletion
lines. Among these, 289 lines are unrelated to vulnerability
(e.g., modifications in the ChangeLog file). On average, each
vfc has 21.8 modification lines. The number of added lines
significantly exceeds that of deleted lines, underscoring the
critical importance of incorporating additional code into the
analysis process. Among these, 10.3% are large vfcs (the
number of modification lines exceeding 50). Notably, 79 vfcs
(64.75%) contain both code insertion and deletion, 29 vfcs
exclusively insertions (23.77%), and 15 vfcs solely involve
deletions (12.30%).

Verifying & Labeling. We apply the following process to
systematically label the ground-truth dataset:

(i) The fixed version can be determined through the official
release of vfcs. We confirm whether versions following
the fixed version are vulnerable by checking if they
contain the patch code.

(i1) For the remaining version, we obtained the public PoC
of each vulnerability from the Git issues or by referring
to OSS sites.

(iii) To validate the PoC on each corresponding OSS version,
we establish the dependent environment for each OSS
version and compile the libraries.

(iv) During the PoC input testing process for each vul-
nerability, we analyze the triggering conditions and
dangerous behaviors of the vulnerability and label the
statements that trigger the vulnerability as Siyigger. For
versions where the PoC cannot trigger the vulnerability
(as some PoCs are only applicable to certain specific ver-
sions), we check whether the version contains Siy;gger
to label the version.

In our experimental setup, we took 10 days to build the
software and version pool. Then we took 30 days to build
the ground-truth dataset, including the time taken to establish
the dependent environment for each software version, as well
as the time to perform vulnerability verification and labeling.

B. Baseline and Metrics

Baseline. For the vulnerable version identification task, we
selected the NVD [52], along with SOTAs: SZZ-based meth-
ods (AG-SZZ [53], B-SZZ [54], V-SZZ [17]) and clone-

based methods (VOFinder [16], VISCAN [27], VERJava [28]
and Vision [29]) for accuracy comparison. We gathered the
vulnerable version range of each CVE from CPE to evaluate
the NVD’s accuracy.

The basic idea of SZZ algorithms is to backtrack the commit
history to locate the earliest commit that introduces the dele-
tion lines removed by security patches. We use different SZZ
algorithms to identify the vic, with the versions between the vic
and the vfc considered vulnerable. Since these algorithms trace
deleted lines individually, instances may arise where multiple
vic are identified, and in such cases, we select the earliest one
as the detection outcome.

VOFinder, VISCAN, VERJava, and Vision are clone-based
methods. We use their techniques to detect code clone for each
version and identify the affected versions of the vulnerabilities
in the ground-truth dataset. Because VERJava and Vision
are applied in Java, we modified the code to make them
compatible with C/C++.

For VERCATION, we selected thresholds 191 = 0.9, 95 = 0.8
and ¥3 = 0.7 (related experiments are introduced in Sec-
tion V-C). In terms of the performance of vulnerability code
extraction, we compared the differences between combining
various LLMs (GPT-4, CodeLlama-13B, DeepSeek-V3) and
using the static analysis tool Joern parser [33] alone.

Metrics. To evaluate the accuracy, we employ the follow-
ing three metrics, i.e., true positives (1'P), false positives

(F'P), false negatives (F'N), precision (%), recall

__#TP . 2xprecisionkrecall
(#TP+#FN) and Fl-score (precision+recall), to measure

the accuracy of the above methodologies. These metrics are
also used in previous studies to evaluate the technique’s
performance [9], [17]. Because of significant differences in
the version count for distinct OSS, we compute the precision
and recall for each OSS and report the average of precisions
and recalls finally.

C. Implementation Details

We utilized Joern [33] for program slicing and developed
Python scripts to extract control and data dependencies, out-
putting the sliced statements as dangerous flows. We explored
three LLM models, GPT-4 [30], CodeLlama-13B [31], and
DeepSeek-V3 [32] for vulnerable code extraction. We use the
public API developed by OpenAl to perform the experiment
in GPT-4. The API version is GPT-4-0613 published in
2023. CodeLlama was created through further fine-tuning of
Llama 2 on specific code datasets. We selected the 13B pa-
rameter model (codellama/CodeLlama-13b—-hf) from
the CodeLlama model series. The API of DeepSeek-V3 was
published in July 2024. We set the temperature parameter to
1.0. To account for the stochastic nature of LLM outputs, we
generate 10 independent responses for each CVE [55]. We
employ a majority voting strategy where statements appearing
in > 6 out of 10 runs are included in the final vulnerable
statement set for evaluation. The maximum size of tokens
is 1,024. We deployed the Codellama model on our server
with four NVIDIA RTX A5000 GPUs. Similar to GPT-4,
the temperature parameter is set to 1.0, and the maximum
size of tokens is set to 1,024. Subsequently, we apply weight

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

allocation strategies to extract vulnerable statements using
Python scripts. For threshold selection, we used 6; = 0.9,
02 = 0.8 and 63 = 0.7 based on grid search optimization
described in our sensitivity analysis. In the code change
detection, we utilize the Clang 10.0.0 tool for function ex-
pansion (inline optimization) and AST generation of C/C++
code. Specifically, we use the -fsyntax-only option to perform
syntax checking without actual compilation. We then develop
Python scripts to achieve AST normalization and similarity
comparison. Overall, we constructed our system with 6K LoC
in Python.

V. EVALUATION

In this section, we evaluate the performance of the proposed
VERCATION by answering the following research questions
(RQs).

e RQ1. Overall Effectiveness: How does the overall per-
formance of VERCATION compare against state-of-the-art
vulnerable version identification methods?

o RQ2. Architectural Contribution: How do the key architec-
tural choices in VERCATION—the use of an LLM, static
analysis, and statement weighting—contribute to its perfor-
mance?

o RQ3. Component Robustness: How accurate and robust is
VERCATION’s statement-level code clone detection?

e RQ4. Real-World Application: What are the effects of
applying VERCATION in the real world scenarios?

A. RQI: Overall Effectiveness

We first compare VERCATION against the NVD and SOTA
methods. Table III shows the vulnerable version identifica-
tion results of NVD, SZZ algorithms, VOFinder, VISCAN,
VERJava, Vision, and VERCATION. Note that some CVEs
do not provide vulnerable versions in NVD, such as CVE-
2021-30499 [56]. SZZ algorithms cannot work on the vfcs
containing solely added lines (i.e., 11 cases), so we exclude
these cases in approaches using the SZZ algorithm.

1) Comparison with NVD: The NVD achieves a precision
of 66.8% and a recall of 41.8%. False positives often occur
because NVD may broadly flag all versions preceding a patch
as vulnerable without specific analysis. This situation exists in
18 CVEs (15%) of the ground truth. For instance, security ex-
perts found a buffer overflow risk exists in Libtiff 4.4.0,
but NVD simply reported the versions of Libtiff<4.4.0
were exposed in vulnerability. In reality, the vulnerable version
range is Libtiff<4.4.0 and >4.0.0.

The reason for low recall in NVD can be summarized into
two types: (i) NVD only reported the version in which vul-
nerabilities were found. For example, CVE-2017-14152 [57]
was found in OpenJPEG 2.2.0, then NVD reported the
affected version was only 2.2.0, whereas the real vulnerable
version range was 2.2.0-2.2.1. The problem exists in 57 CVEs
(47%) of the ground truth. (ii) Some vulnerabilities are not
fixed promptly after disclosure but are addressed after several
versions have been released. These vulnerable versions can
be overlooked if NVD does not update the version informa-
tion. For example, CVE-2021-33815 [58] was discovered in

TABLE III: Comparison with NVD Database and SOTA
works.

Type Methods Precision Recall F1 score
NVD Database 0.668 0.418 0.514
S77 AG-SZZ [59] 0.372 0.625 0.466
Aleorithm B-SZZ [54] 0.378 0.543 0.446
g V-SZ7 [17] 0.756 0.851 0.801
VOFinder [16] 0.829 0.745 0.785
Clone-based V1SCAN [27] 0.863 0.724 0.788
Approach VERIJava [28] 0.891 0.247 0.386
Vision [29] 0.842 0.881 0.861
VERCATION 0.918 0.945 0.931

FFmpeg 4.4 but was fixed in version 5.0. Due to the lack of
timely tracking of the fix information, NVD overlooked the
vulnerable versions 4.4.1-4.4.4.

2) Comparison with SZZ-based Methods: The basic idea of
SZZ algorithms is to backtrack the commit history to locate
the earliest commit that introduces the deletion lines removed
by patches. Regarding Fl-score, VERCATION improves the
best-performing baseline V-SZZ by 16.2%. And the difference
between the F1 of B-SZZ and AG-SZZ is small (0.446 vs.
0.466). We affirmed that there are two main causes of false
alarms in these approaches:

(i) The line mapping algorithm based on edit distance does
not consider the behavior of the source code. As shown
in Listing 2, The deleted lines were encapsulated within
the added functions, and in fact, they have the same
behavior. Line mapping algorithms failed in these cases,
unable to identify the true vic.

(ii) The SZZ algorithm treats each deleted line as an inde-
pendent origin for backtracking, resulting in multiple
vic being identified. For example, the security patch
of CVE-2020-35965 [60] from FFmpeg has 5 deleted
lines. The true vulnerability logic lies in the lack of
checking the size of ymax before executing the memset
zero operation, potentially resulting in out-of-bounds
writes to memory. Our method utilizes a weighted
allocation approach to increase the weight of memset
operation, thus backtracing to the correct vic. However,
SZZ algorithms separately backtrack different deleted
lines, resulting in the identification of 5 different vic,
significantly reducing the precision.

3) Comparison with Clone-based Methods: In the same
dataset, VOFinder achieved a precision of 82.9% and a re-
call of 74.5%. There are two reasons for the inaccuracies
of VOFinder: 1) VOFinder generates a hash value for the
entire vulnerable function as a vulnerability fingerprint. This
fingerprint is coarse because the vulnerable function contains
a lot of vulnerability-irrelevant code, introducing a significant
amount of noise. 2) VOFinder considers the function contain-
ing all deleted patch code as a vulnerable function clone. This
approach also overlooked the inserted code of the security
patch.

VISCAN achieves an Fl-score of 0.788, combining
version-based detection with code-based detection methods.
For version-based detection, VISCAN obtains CVE-affected

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

OSS versions from NVD’s CPE database and filters out
functions belonging to versions outside the CVE’s affected
range. As we mentioned earlier, there are many errors in
NVD’s affected version information, which consequently af-
fects VISCAN’s detection results. For code-based detection,
VISCAN primarily relies on text similarity comparisons,
overlooking deeper relationships between code snippets. When
functions are refactored or outlined into new functions, this
approach fails to identify vulnerability-related code, resulting
in false negatives.

Table III reports a low recall of 0.247 in VERJava. VERJava
has a fundamental issue in determining vulnerable versions:
it requires the target version’s code to simultaneously meet
two strict conditions - perfect matching of deleted lines in
the vfc (delSim > 1.0) and the absence of most added
patch code (addSim < 0.9). In project development, code
frequently undergoes changes, including variable name modifi-
cations and function refactoring. This means that even versions
that contain vulnerabilities are unlikely to meet such strict
matching requirements due to code evolution. As a result,
many vulnerable versions are incorrectly identified as safe
versions, leading to serious false negatives. Another problem
with VERJava is similar to VOFinder, it incorrectly assumes
that deleted lines in the patch represent vulnerable features.

Vision achieves an F1 of 0.861, combining critical statement
selection with weighted dependency graphs. Vision relies on
taint analysis as a first step for critical statement selection.
However, this approach often includes many statements that
are control or data-dependent but not actually relevant to the
vulnerability, which consequently affects Vision’s precision
in extracting vulnerable code. Moreover, Vision’s analysis is
limited to Java packages from Maven repositories, which may
not fully capture the vulnerability patterns in other languages.

Accuracy of VERCATION. VERCATION demonstrates con-
sistent performance across most projects, achieving high pre-
cision (> 0.90) on 9 out of 12 projects and perfect recall
(1.00) on several projects, including cJSON and Libcaca.
Notably, while baseline methods like V-SZZ and VOFinder
show significant performance fluctuations across different
projects, VERCATION maintains more stable performance. For
instance, on the Binutils project, which has complex version
management and frequent refactoring, Vercation achieves a
0.95 FI1 score, outperforming V-SZZ (0.47 F1 score) and
VOFinder (0.88 F1 score).

Though VERCATION performed well in the version iden-
tification, it still failed to identify inducing commits for a
small number of vulnerabilities. One reason is that in some
cases, slight modifications in the AST have little impact on the
similarity between the AST before and after the modification,
but are crucial in introducing vulnerabilities. Another reason is
that despite using the weight allocation strategies, there are still
some statements related to patch variables that are not relevant
to the vulnerability but have been assigned high weights. The
above two reasons may incorrectly identify vic, leading to a
misidentification of the vulnerable version range.

In our evaluation, 5.7% of traced commit histories involved
merge commits with multiple parents. For example, in CVE-

TABLE 1IV: Performance of LLMs in Vulnerability Logic
Comprehension.

Method (Tool) Avg #Vuln Stmts' Precision Recall F1
Static Analysis (Joern) 22.64 0.435 0.544 0483
LLM (DeepSeek) 11.33 0.742 0.796 0.768
Static Analysis + LLM 5.66 0918 0945 0931

(Joern + DeepSeek)

! The average count of extracted vulnerable statements for each CVE.

2022-1355 [61] from Libtiff, the vulnerability was introduced
in a feature branch that was later merged into the main de-
velopment line, creating a non-linear history with two parent
commits at the merge point. For these cases involving non-
linear histories, VERCATION achieved a precision of 91.2%
and recall of 92.5%, demonstrating that our multi-path traver-
sal strategy effectively handles branching scenarios without
significant performance degradation.

RQ1: VERCATION demonstrates superior performance
in vulnerable version identification on our ground-truth
dataset, achieving an F1 score of 93.1%. This significantly
outperforms SOTA works. The prompt strategy combining
Few-shot and CoT techniques performs the best.

B. RQ2: Architectural Contribution

1) Program Slicing & LLM Ablation Study: We conducted
ablation experiments by separately removing the program
slicing component (implemented by Joern) and the LLM
component (DeepSeek) from phase 1.

Static Analysis Only. As depicted in Table IV, the effective-
ness of Joern in extracting vulnerability logic is significantly
inferior to that harnessed by the power of LLM models,
with an F1 score 46.9% less than Joern + DeepSeek (Few-
shot + CoT). This discrepancy primarily stems from Joern’s
reliance on fixed dependency extraction patterns, leading to the
retrieval of numerous statements irrelevant to vulnerabilities.
As shown in Figure 5a, using only the static analysis tool
Joern parser for program slicing extracts statements on Lines
3, 7-8, 11-12. While these statements are related to control
flow, they are not directly relevant to the vulnerability. This
illustrates how static analysis alone can include extraneous
information that is not crucial to understanding the specific
vulnerability logic. Meanwhile, we found that Joern cannot
accurately address pointer structure dataflows, thus missing
some statements that have data or control dependencies. To
elaborate, on average, Joern extracts 3.64 times more vulner-
able statements per CVE compared to combined DeepSeek.

LLM Only. The approach of LLM Only (DeepSeek) involves
inputting the entire function into the model for analysis. As
illustrated in Table 5b, DeepSeek alone (with Few-shot + CoT
strategies) achieves an F1 score of 0.739, which is 18.7%
lower than the Joern + DeepSeek combination (0.926). This
performance gap primarily stems from LLM’s tendency to
include a broader range of contextual information when given
an entire function as input, this over-inclusion of context

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

int item_num = avio_rb32(pb);
if (item_len != 18) {

if (item_num > 65536)
av_log(mxf->fc, AV_LOG_ERROR,
"item_num %d is too large\n", item_num);
7 return AVERROR_INVALIDDATA;

8 if (mxf->local_tags)

9 ...
10 mxf->local_tags = av_calloc(item_num,
item_len);

11 if (!\mxf->local_tags)

12 return AVERROR(ENOMEM);

13 mxf->local_tags_count = item_num;

14 avio_read(pb, mxf->local_tags,
item_num¥*item_len);

AN WN R

1 int item_num = avio_rb32(pb);

2

3

4

5 if (item_num > 65536)

6 av_log(mxf->fc, AV_LOG_ERROR,
"item_num %d is too large\n", item_num);
7

8

9

10 mxf->local_tags = av_calloc(item_num,
item_len);

11 if (!mxf->local_tags)

12 return AVERROR(ENOMEM);

13 mxf->local_tags_count = item_num;
14 avio_read(pb, mxf->local_tags,

item_num*item_len);

if (item_num > 65536)

O NN AN WNR

9

10 mxf->local_tags = av_calloc(item_num,
item_len);

11

12

13 mxf->local_tags_count = item_num;

14 avio_read(pb, mxf->local_tags,
item_num*item_len);

(a) Extracted by Using Only Joern Parser.

(b) Extracted by Using Only LLM.

(c) Extracted by Combining Joern Parser and
LLM.

Fig. 5: The Vulnerable Statements Extracted by Different Methods.

TABLE V: VERCATION with Different Strategies.

Model Strategy Precision Recall F1 score
Zero-shot 0.708 0.823 0.761
GPT-4 Few-shot 0.892 0.907 0.899
Few-shot + CoT 0.893 0.946 0.925
Zero-shot 0.671 0.789 0.725
CodeLlama Few-shot 0.851 0.895 0.873
Few-shot + CoT 0.842 0.912 0.876
Zero-shot 0.769 0.827 0.797
DeepSeek-V3 Few-shot 0.882 0.921 0.901
Few-shot + CoT 0.918 0.945 0.931

leads to lower precision because some of which are tangential
to the core vulnerability logic. As illustrated in Figure 5b,
using only LLM improves upon static analysis by reducing
the extraction of irrelevant control flow statements. However,
when given the entire function as input, the LLM struggles to
precisely differentiate between core vulnerability-related code
and contextual information. This results in the inclusion of
some noise, such as variable definitions (Line 1) and unrelated
control flow statements (Lines 4, 7-8).

As shown in Figure 5c, the combination of Joern’s struc-
tured analysis with DeepSeek’s code understanding allows for
a more focused and accurate extraction of vulnerability-related
statements. Joern provides an initial set of potentially relevant
statements based on program structure, which DeepSeek then
refines using its contextual understanding, resulting in a more
balanced and effective approach to vulnerability logic compre-
hension.

2) LLM Performance, Consistency, and Generalization: We
further evaluated the LLM component by comparing different
models and analyzing their stability and ability to generalize.

Comparative Performance. Table V illustrates the perfor-
mance of combining the dangerous flows extracted by the
Joern parser with LLMs on our dataset, with the “Strategy”
column delineating different prompting strategies. Our obser-
vation reveals that DeepSeek-V3 prompted with Few-shot and
CoT surpasses other models. Specifically, DeepSeek-V3 (Few-

TABLE VI: LLM Consistency for Vulnerable Statement Ex-
traction.

Model Agreement Rate Jaccard Similarity
GPT-4 0.454 0.439
CodeLlama 0.517 0.566
DeepSeek-V3 0.586 0.629

shot + CoT) exhibits a 0.64% and 6.28% improvement in F1-
score compared to the GPT-4 and CodeLlama, respectively.
Moreover, the performance trends with DeepSeek remain con-
sistently upward across different prompting strategies. When
prompted with the Few-shot prompt, DeepSeek achieves a
13.15% improvement in Fl-score over the Zero-shot prompt.
This is further improved by 3.33% F1 with the addition
of CoT prompting. We observed that the utilization of the
Zero-shot prompt often results in an increased generation of
false positives (vulnerable statements), including the state-
ments predefining patch variables (e.g., Line 6 in Listing 1).
Conversely, in examples prompted by Few-shot, we prioritize
understanding the triggering mechanisms of vulnerabilities,
thereby facilitating LLM in learning a more accurate method
of generating vulnerability logic.

LLM Consistency Analysis. To evaluate the stability of our
LLM-based vulnerable statement extraction, we measured two
consistency metrics across 10 independent runs with temper-
ature = 1.0. The agreement rate represents the percentage
of statements that appeared in all 10 runs relative to the
total unique statements extracted across all runs. As shown
in Table VI DeepSeek-V3 achieved the highest agreement
rate 58.6%, followed by CodeLlama (51.7%). For cases with
variation, we calculated average Jaccard similarity by com-
puting pairwise similarities between all run combinations
and taking the mean. DeepSeek-V3 achieved the highest
Jaccard similarity of 0.629 shown in Table VI, indicating that
DeepSeek-V3 maintains the most consistent performance even
when exact matches were not achieved. While the consistency
levels are moderate across all models, this reflects the inher-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

Pre-cutoff Period i i
28 Post-CodeLlama Period i
1
26 Post-GPT-4 Period ‘Codeuama !
24 Post-DeekSeek Period (Jan 2023) :
—e— CVE Count i
22
n 20
p=
18
O DeepSeek-V3
‘5 16 (July 2024)
@ 14
o
E12
Z 10
8
6 i
1
4 Pre-CodelLlama Cutoff: 68 CVEs ! ! 35
2 i (CVES
1 1
0 H H
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

Fig. 6: Temporal Distribution of CVEs with Knowledge Cutoff Boundary.

ent complexity of vulnerability logic analysis where slight
variations in reasoning can lead to different but potentially
valid interpretations. The superior consistency of DeepSeek-
V3, combined with its highest Fl-score performance, makes
it the most reliable choice for practical deployment.

Generalization Capability. A critical concern regarding the
LLM-based approach is whether the models’ knowledge cut-
off affects performance when analyzing vulnerabilities pub-
lished after the training data cutoff. To address this concern
and demonstrate that VERCATION leverages LLMs’ general
code understanding capabilities rather than specific vulnera-
bility knowledge, we conducted an ablation study comparing
each model’s performance on CVEs published before and after
their respective knowledge cutoff dates.

The three LLLMs in our evaluation have different knowledge
cutoff dates: CodeLlama’s training data extends to Septem-
ber 2022 (based on Llama 2’s cutoff date [62]), GPT-4’s
knowledge cutoff is December 2023 [63], and DeepSeek-
V3’s knowledge cutoff is July 2024 (confirmed through direct
inquiry with DeepSeek). We partitioned our dataset according
to each model’s cutoff date and evaluated their performance
on both pre-cutoff and post-cutoff CVE subsets as shown in
Figure 6.

As shown in Table VII, CodeLlama shows a slight perfor-
mance decrease of 1.25% (from 0.881 to 0.870) when analyz-
ing post-cutoff CVEs. In contrast, both GPT-4 and DeepSeek-
V3 demonstrate slight performance improvements on post-cut-
oft CVEs, with GPT-4 improving by 0.54% and DeepSeek-V3
by 1.73%. The performance variations across all models are
minimal (< 2%), indicating remarkable consistency regard-
less of knowledge cutoff boundaries. These results validate our
core hypothesis that VERCATION’s effectiveness stems from
leveraging LLMs’ fundamental code understanding and rea-
soning capabilities rather than memorized vulnerability-spe-
cific knowledge.

3) Effectiveness of the Statement Weighting Strategy: To
validate the effectiveness of our statement weighting strategy,
we conducted an ablation study comparing our weighted ap-

TABLE VII: Performance Comparison Across Knowledge

Cutoff Periods.
Model Cutoff Date Period F1-score
CodeLlama 2022.09 Pre-cutoff 0.881
Post-cutoff 0.870 (| 1.25%)
GPT-4 2023.10 Pre-cutoff 0.923
Post-cutoff 0.928 (1 0.54%)
DeepSeck-V3 2024.07 Pre-cutoff 0.927
Post-cutoff 0.943 (1 1.73%)
0.94-
0.93
0.92
—
w
0.91-
0.90
0.89
0.88
1:1 2:1 3:1 4:1 5:1
Ratio

Fig. 7: Impact of Statement Weight Ratios on F1-Score

proach with different weight ratios across our entire dataset.
We systematically evaluated weight ratios from 1:1 to 5:1,
where the first number represents the weight for sensitive func-
tion statements (Wsensitive) and the second number represents
the weight for regular statements (Wp,s.). These ratios were
tested using the DeepSeek-V3 model, with all other parameters
held constant.

Figure 7 illustrates the impact of different weight ratios on
Fl-score. The results demonstrate that equal weighting (1:1
ratio) achieves an Fl-score of 0.896, while our proposed 2:1
ratio (Wsensitive = 2.0, Wyase = 1.0) achieves the optimal

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

TABLE VIII: Accuracy of Code Clone Detection Methods.

Methods Level Precision Recall
Edit distance statement 0.85 0.84
Hash values statement 0.82 0.82
CodeBERT statement 0.84 0.88
FCDetector function 0.89 0.93
VERCATION statement 0.90 0.95

performance of 0.931, representing a 3.91% improvement. Per-
formance gradually decreases as the weight ratio increases be-
yond 2:1. Higher ratios (3:1 and above) lead to over-empha-
sis on sensitive functions. This causes the similarity score to
be dominated by a small number of statements, reducing the
method’s ability to distinguish between true vulnerability pat-
terns and coincidental sensitive function usage.

RQ2: VERCATION’s effectiveness stems from the synergis-
tic combination of static analysis and LLMs. DeepSeek-
V3 with a Few-shot+CoT prompt proves to be the most
accurate, consistent, and generalizable model. Furthermore,
our 1:2 statement weighting strategy is shown to be optimal
for balancing the influence of sensitive functions.

C. RQ3: Component Robustness

Here we evaluate the accuracy of the similarity comparison
technique utilized in VERCATION’s phase 2.

1) Accuracy of Code Clone Detection: We compare the
code clone detection technique in VERCATION’s phase 2 with
typical statement-level code similarity detection methods: Edit
distance [64], Hash value [65], and CodeBERT embedding
comparison [66]. Current SOTA code clone detection methods
primarily focus on function-level detection [18], whereas our
method operates at the statement level. To perform a compar-
ison, during the process of backtracing the previous commits
of vulnerable statements, we apply code clone detection to the
entire function before and after the modification. If the commit
includes changes to other non-vulnerable statements within
the function, we normalize these statements to be identical.
Table VIII summarizes the accuracy of different code clone
detection methods.

Edit distance [64] calculates the minimum number of edit
operations required to transform one code statement into
another. A smaller edit distance indicates a higher similarity.
Hash values comparison [65] generates hash for each code
statement through MDS5 algorithm and then compares the
hash similarity. CodeBERT embedding comparison [66] uses
CodeBERT to generate embedding representations for each
code statement, then computes the cosine similarity between
these embeddings. FCDetection [67] generates AST and CFG
representations as features. Word2vec and Graph2vec are used
to embed these features. Then the fused feature vectors are
input into a deep neural network model for classification of
code clones.

For Edit distance, Hash values, and CodeBERT embedding
comparisons, we conducted independent threshold optimiza-
tion. Similar to our threshold sensitivity analysis for Vercation,

we evaluated each method across different threshold values
from 0.1 to 1.0 with a step of 0.1, and selected the thresh-
old that achieved the best F1 for that specific method. As
FCDetector is a specialized code clone detection tool, we used
its original pre-trained model and thresholds as specified in
their work. The results presented in Table VIII represent each
method’s optimal performance with their respective optimized
thresholds. The results show that the AST-based code clone
detection achieves the best performance. Because the edit
distance and hash value methods terminate the backtrack
in cases of low textual similarity without considering code
behavior, thus leads to a large number of false negatives. The
results show that our method is robust against low syntactic
similarity. CodeBERT embedding comparison, while effective
for semantic similarity, cannot capture fine-grained structural
information. AST representations preserve the exact syntactic
structure of code, allowing for more precise comparisons
of code organization and logic flow. This structural analysis
can identify clones that CodeBERT might miss, especially in
cases where similar functionality is implemented with different
coding patterns or variable names, which can be addressed by
AST normalization. Although FCDetector also extracts AST as
a feature and normalizes variable names and constant values, it
cannot identify function outline cases (as shown in Listing 2).
Moreover, the CFG features that FCDetector focuses on are
not particularly effective when there are only a few vulnerable
statements.

2) Analysis of Refactoring Commits: As motivated in Ex-
ample 2 of Section II-C, refactoring commits can significantly
impact vulnerable version identification by introducing struc-
tural differences while preserving code behavior. To validate
this motivation and evaluate the effectiveness of our code clone
detection approach, we analyzed the commits encountered
during our evaluation. In the backtrack of our dataset, we
conducted a total of 276 comparisons between pre-commit and
post-commit. On average, it takes 3.73 comparisons to identify
the vic for each vfc. During the commit backtrack, cases with
significant edit-distance differences (67 < 0.9) but minor AST
differences (> > 0.8) were classified as refactoring commits.
Out of these comparisons, 89 commits (32.2%) were identified
as refactoring commits, indicating that refactoring commits
are a significant factor in backtracing vic. Furthermore, our
analysis reveals that cases without any intermediate commit
between the vic and the vfc are comparatively uncommon,
constituting only 11% of instances in our dataset.

3) Threshold Sensitivity: We used 1¥; and 5 to represent
the threshold for edit-distance similarity and AST-based simi-
larity, respectively. 93 represents the similarity_score used for
the backtrack termination condition. To measure the sensitivity
of the thresholds, we incrementally increased 1, ¥ and 3
by 0.1 from O to 1, and evaluated the identification F1-score of
the CVEs in ground-truth. Specifically, we first initialized J,
and 93 to 0.8, as high similarity thresholds generally provide
better precision in code clone detection. Then we varied ¥4
from 0.1 to 1.0 with a step of 0.1 and found the value of ¥,
that achieved the highest Fl-score (0.9). With 9, fixed at 0.9
and kept J3 at 0.8, we varied 9J5 from 0.1 to 1.0 and found the
optimal value (0.8). Finally, with ©¥; = 0.9 and ¥5 = 0.8, we

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

threshold 6 i N .
k- threshold 6> T e 3 ;‘;3
0.8 | -=- threshold 65 s ¥ 4 AN
/. v N\ e]
/*’ N\,
o 0.6 2 \
5 , 3y
3 V.
=04 s
e
0.2 L &
S Peer S
-
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

Fig. 8: Threshold Sensitivity of VERCATION.

varied ¥3 from 0.1 to 1.0 and determined the optimal value
of ¥3 (0.7). When the thresholds are greater than the optimal
values, the precision is higher while the recall decreases. In
contrast, the precision slightly decreases.

RQ3: Refactoring commits occupy a significant proportion
of the code changes history. The AST-based similarity com-
parison in VERCATION performs better in the vulnerability-
introducing commit identification task for calculating code
similarity, enhancing the overall effectiveness of VERCA-
TION in vulnerable versions detection.

D. RQ4: Real-World Application

We created a new vulnerability dataset consisting of 342
CVEs from the NVD. By developing a simple crawler, we
obtained the corresponding CPE and CVE patches. We ap-
plied VERCATION to the vulnerability dataset and found the
vulnerable versions of 202 CVEs are incorrect. Among them,
the CPE for 134 CVEs is incomplete, with 108 CVEs only
reporting a single vulnerable version, significantly increasing
the risk of vulnerability propagation. Furthermore, the CPE
for 68 CVEs is affected by the overinclusion problem, with
56 CVEs considered all versions before the OSS version
mentioned in the vulnerability report as susceptible to attack,
without conducting a detailed analysis. We have submitted
reports to the NVD detailing the CVEs with incorrect affected
versions information we identified. The NVD team’s response
said they plan to address these inaccuracies as part of their
ongoing efforts to enhance the quality of their vulnerability
information. More importantly, we have discovered 4 CVEs
that do not provide information about the vulnerable version.

To understand the practical impact of accurately identi-
fying vulnerable versions, we analyzed the severity of 134
vulnerabilities with incomplete version information in the
NVD dataset. The analysis shows that CVEs with CVSS
Score of 4.0-6.9 (Medium) and 7.0-8.9 (High) accounted
for the most, at 49.7% and 49.1%. Notably, we identified
2 critical vulnerabilities (CVSS Score 9.0-10.0) in FFmpeg
and php. These findings highlight that in many high-severity
vulnerabilities, NVD does not report the correct vulnerable
version. This inaccuracy has serious implications, as down-
stream software manufacturers may not recognize the need to
update their vulnerable dependencies in time, exposing their
systems to significant security risks. Vercation’s high accuracy

in identifying vulnerable versions therefore helps organizations
improve the accuracy of vulnerability reports.

RQ4: Applying Vercation to real-world CVEs demonstrated
practical impact in two key findings: it identified 202 CVEs
(59.1%) with incomplete or overincluded versions in NVD
reports. Notably, nearly half of the vulnerabilities with
incorrect versions were of high or critical severity, empha-
sizing the importance of accurate version identification.

VI. DISCUSSION
A. Performance and Cost Analysis

In terms of performance efficiency, VERCATION analyzes
each vulnerability in an average of 28.61 seconds. This in-
cludes the time for program slicing, LLM processing, and
AST-level code clone detection. Compared to existing ap-
proaches: V-SZZ takes 10.25 seconds on average, VOFinder
requires approximately 22 seconds per CVE, Vision needs
1,094.12 seconds per vulnerability, and VISCAN can detect
vulnerabilities within 20 seconds for 99% of projects. While
VERJava performs faster at 0.71 seconds per CVE, it achieves
much lower recall in version identification. Compared to
other methods, Vercation achieves higher accuracy without
significant time overhead.

The best LLM DeepSeek-V3 in our evaluation, whose API
pricing is $0.30 per million tokens for input and $1.10 per mil-
lion tokens for output. Based on our experimental setup with
10 independent runs for self-consistency, the average LLM
API cost per CVE is only $0.0034. This cost includes: input
tokens for CVE descriptions, dangerous flows, and few-shot
examples, output tokens for logic explanation, and vulnera-
ble statements. The low cost allows the LLM’s application in
practical security.

B. Comparison with Dynamic Analysis

While dynamic analysis through PoC testing provides
definitive evidence of vulnerability existence, several limita-
tions render it insufficient for comprehensive and efficient
identification of vulnerable versions at scale. Our analysis of
CVEs published in the NVD from 1999 to 2025 reveals that
only 24% of CVEs provide publicly available exploit links, and
these exploit reports do not guarantee successful reproduction
across different software versions.

The portability of PoCs across different software versions
presents another critical challenge for dynamic analysis ap-
proaches. Previous studies have demonstrated that PoC re-
producibility across different environments and versions is a
significant technical hurdle [4], [7]. During the construction
of our ground-truth dataset, we encountered these challenges
firsthand when attempting to validate vulnerabilities through
PoC execution. Of the available PoCs in our dataset, only
55% could be successfully executed across multiple versions
without modification. The remaining cases failed to trigger the
vulnerability due to environmental dependencies, compilation
differences, or version-specific behavioral changes, which re-
quired substantial manual code-level analysis for verification.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

The temporal cost of dynamic analysis further limits its
practical applicability for large-scale vulnerable version iden-
tification. Our experience during dataset construction revealed
that each CVE required an average of 3 hours for envi-
ronment setup, dependency resolution, and PoC execution
across different versions, excluding the time needed for manual
verification when PoCs failed. For our complete dataset of
122 CVEs spanning 1,111 versions, comprehensive dynamic
testing would require approximately 30 days compared to
28.61 seconds per CVE for our static approach. This represents
a 742x time difference in favor of static analysis, making
dynamic approaches impractical for real-world deployment
scenarios where rapid vulnerability assessment is crucial.

C. Threats to Validity

1) Internal Validity: Static—analysis precision. VERCA-
TION relies on the Joern parser to build code-property
graphs that combine an AST, control-flow graph, and data-
dependency graph. Joern struggles with certain C/C++ con-
structs, notably complex pointer arithmetic, overloaded con-
structors, and indirect calls, so some data flows and constructor
edges are missed. Our AST expansion step further inherits
the classic limitations of method outlining: it cannot always
disambiguate targets reachable via function pointers, callbacks,
or C++ virtual dispatch, which static analysis alone cannot
resolve definitively [68], [69]. These imprecisions may hide
or mislocate refactoring patterns.

Inter-procedural dependencies. In multi-function patches,
VERCATION currently analyses each affected function inde-
pendently and then merges the results. Although effective for
most cases, this strategy may overlook vulnerability patterns
that hinge on data/control flows spanning several functions.

LLM variability and reproducibility. As LLMs continue
to evolve rapidly, the performance of VERCATION might
change with newer versions of these models. This could affect
the long-term consistency of our results. Additionally, LLMs
may have biases or limitations in their training data that
could influence their ability to understand certain types of
vulnerabilities or code structures. To mitigate this, we have
provided detailed information about the LLM versions and
prompts used in our study, but future research may need
to account for potential variations in LLM capabilities and
performance as these models continue to develop.

2) External Validity: Language generalisability. VERCA-
TION’s core methodology is language-agnostic and can be
adapted to other programming languages. The program slicing
tool Joern inherently supports multiple languages, including
Java, Python, JavaScript, and PHP. The main adaptations
required would be updating the sensitive function table for
language-specific vulnerability patterns and modifying AST
generation rules according to the target language’s syntax and
semantics. Future work could involve extending VERCATION
to support a broader range of programming languages and
verifying its effectiveness across different language paradigms.

Repository branching complexity. While our approach han-
dles common merge [70] and branching patterns effectively,

16

complex branching scenarios, such as when the same vulner-
able code is independently modified in multiple parallel fea-
ture branches before being merged (creating diamond-shaped
merge patterns), may require more sophisticated graph traver-
sal algorithms to accurately determine the earliest vulnerability
introduction point [71], [72].

VII. RELATED WORK
A. Vulnerability Fixing Commit Analysis

Several studies have focused on analyzing vulnerability
fixing commit (VFC) to extract vulnerability features, which
can be used for various purposes such as vulnerability
detection, classification, and affected version identification.
VulPecker [73] extracts code patterns from VFC to detect
similar vulnerabilities in other software versions. SySeVR [74]
uses a systematic approach to extract syntax- and semantic-
based vulnerability features from patches. VulDeePecker [75]
leverages deep learning techniques to learn vulnerability pat-
terns from code gadgets extracted from vulnerability fixing
commits. Most existing VFC analysis methods rely heavily
on predefined rules or patterns, which may not capture the
full context of vulnerabilities. VERCATION incorporates VFC
analysis by leveraging LLMs to understand the context of code
changes in fixing commits, potentially capturing more nuanced
vulnerability features.

B. Vulnerable Version Detection for OSS

Several approaches have been proposed for vulnerable ver-
sion identification. V-SZZ [17] uses the SZZ algorithm to
backtrack vfcs and identify vulnerability-introducing changes.
MVP [12] employs program slicing to extract vulnerability
and patch signatures, then uses these to identify potentially
vulnerable functions. VOFinder [16] generates fingerprints for
vulnerable functions and uses a clone-based technique to
detect vulnerable versions across different software releases.
VCCFinder [76] uses machine learning techniques to identify
vulnerability-contributing commits. VUDDY [77] proposes a
scalable approach for vulnerable code clone detection in large-
scale code bases. Existing approaches often rely on predefined
patterns and syntactic-level analysis, leading to imprecision
in vulnerability characterization and code clone detection.
VERCATION combines static analysis with LLM for code
understanding and introduces AST-based code clone detection
to address the code structure modification problem.

C. Code Refactoring Detection

Some researchers conducted studies on the characteristics of
code refactoring not altering the code behavior of the code and
have proposed detection methods. MLRefScanner [78] detects
refactoring commits in Python projects by analyzing commit
history and extracting features that represent refactoring activ-
ities without altering code behavior. Abid et al. [79] perform
a study outlining different levels of refactoring from code
level to architecture and discuss the importance of maintaining
behavior during refactoring. Eman et al. [80] focus on how
refactoring is integrated into the code review process while

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

ensuring that the original software behavior is preserved.
Existing code refactoring detection methods primarily focus on
high-level changes like renaming and method/class moves. Our
approach, however, targets statement-level changes through
fine-grained AST expansion and normalization, including in-
line function expansion during AST generation.

D. Code Clone Detection

Some SOTA techniques utilize static analysis to conduct
code clone detection. SCDetector [81] feeds tokens with graph
detail into a Siamese architecture neural network to train a
code clone detector. Fang et al. [82] propose a joint code
representation that applies fusion embedding techniques to
learn hidden features of source codes, then train a supervised
deep learning model to detect functional code clones. FCDe-
tection [67] generates AST and CFG representations and uses
Word2vec to embed these features into vectors. Then the fused
feature vectors are input into a deep neural network model for
classification of code clones.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed VERCATION, an approach designed for
vulnerable version identification of open-source C/C++ soft-
ware. Our approach introduces two key innovations: leveraging
LLMs to enhance the extraction of vulnerability-related state-
ments and employing code clone detection based on expanded
and normalized ASTs. Experimental results on our dataset of
122 CVEs across 12 popular open-source projects validate
that VERCATION surpasses existing techniques for vulnerable
version identification, demonstrating notable improvements
in both precision and recall. VERCATION’s novelty lies not
in individual techniques but in the systematic integration of
semantic analysis and methodological innovations in LLM
application. The combination creates a qualitatively different
approach that advances the state-of-the-art in both accuracy
and practical applicability, opening new research directions
for Al-assisted software security analysis.

In the future, we plan to empirically validate VERCATION
on a broader set of languages (Java, Python, JavaScript, and
PHP) to confirm its effectiveness. Furthermore, we are inter-
ested in exploring integrating inter-procedural analysis tech-
niques to enhance the detection of cross-functional vulnera-
bility patterns.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful
comments. This research is supported by Beijing Natural Sci-
ence Foundation (Grant No. L.234033), the National Research
Foundation, Singapore, and the Smart Nation Group under the
Smart Nation Group’s Translational R&D Grant (Award No.
TRANS2023-TGC02). Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore or the Smart Nation Group.

REFERENCES

[1] “Nvd - home,” https://nvd.nist.gov/, 2009.
[2] “Cve-2018-5785,” https://mvd.nist.gov/vuln/detail/CVE-2018-5785,
2018.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards
the detection of inconsistencies in public security vulnerability reports,”
in 28th USENIX security symposium (USENIX Security 19), 2019, pp.
869-885.

D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 919-936.

X. Tan, Y. Zhang, C. Mi, J. Cao, K. Sun, Y. Lin, and M. Yang,
“Locating the security patches for disclosed oss vulnerabilities with
vulnerability-commit correlation ranking,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 3282-3299.

V. H. Nguyen and F. Massacci, “The (un) reliability of nvd vulnerable
versions data: An empirical experiment on google chrome vulnera-
bilities,” in Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, 2013, pp. 493—
498.

J. Dai, Y. Zhang, H. Xu, H. Lyu, Z. Wu, X. Xing, and M. Yang,
“Facilitating vulnerability assessment through poc migration,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 3300-3317.

D. A. Da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho,
and A. E. Hassan, “A framework for evaluating the results of the szz
approach for identifying bug-introducing changes,” IEEE Transactions
on Software Engineering, vol. 43, no. 7, pp. 641-657, 2016.

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza,
and R. Oliveto, “Evaluating szz implementations through a developer-
informed oracle,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 436-447.

V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic method
for assessing the versions affected by a vulnerability,” Empirical
Software Engineering, vol. 21, pp. 2268-2297, 2016.

G. Rodriguez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M.
Germadn, and J. M. Gonzalez-Barahona, “How bugs are born: a model
to identify how bugs are introduced in software components,” Empirical
Software Engineering, vol. 25, pp. 1294-1340, 2020.

Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu, W. Huo,
W. Zou et al., “Mvp: Detecting vulnerabilities using patch-enhanced vul-
nerability signatures,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 1165-1182.

Y. Shi, Y. Zhang, T. Luo, X. Mao, and M. Yang, “Precise (un)
affected version analysis for web vulnerabilities,” in Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1-13.

J. Jang, A. Agrawal, and D. Brumley, “Redebug: finding unpatched code
clones in entire os distributions,” in 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 48-62.

S. Woo, H. Hong, E. Choi, and H. Lee, “Movery: A precise approach
for modified vulnerable code clone discovery from modified open-source
software components,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 3037-3053.

S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich, “VOfinder: Discovering
the correct origin of publicly reported software vulnerabilities,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 3041-
3058.

L. Bao, X. Xia, A. E. Hassan, and X. Yang, “V-szz: automatic identifi-
cation of version ranges affected by cve vulnerabilities,” in Proceedings
of the 44th International Conference on Software Engineering, 2022, pp.
2352-2364.

C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT international symposium on software testing
and analysis, 2020, pp. 516-527.

X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha,
X. Peng, and Y. Lou, “Evaluating large language models in class-level
code generation,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1-13.

J. Li, G. Li, C. Tao, H. Zhang, F. Liu, and Z. Jin, “Large language
model-aware in-context learning for code generation,” arXiv preprint
arXiv:2310.09748, 2023.

T. Ahmed, K. S. Pai, P. Devanbu, and E. Barr, “Automatic semantic
augmentation of language model prompts (for code summarization),”
in Proceedings of the IEEE/ACM 46th International Conference on

Software Engineering, 2024, pp. 1-13.

https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2018-5785

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

T. Ahmed and P. Devanbu, “Few-shot training llms for project- [46] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
specific code-summarization,” in Proceedings of the 37th IEEE/ACM D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
International Conference on Automated Software Engineering, 2022, pp. language models,” Advances in neural information processing systems,
1-5. vol. 35, pp. 24 824-24 837, 2022.

T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen, “Long-context llms [47] S. Yang, L. Cheng, Y. Zeng, Z. Lang, H. Zhu, and Z. Shi, “Asteria: Deep
struggle with long in-context learning,” 2024. learning-based ast-encoding for cross-platform binary code similarity
W. Song, S. Oh, S. Mo, J. Kim, S. Yun, J.-W. Ha, and J. Shin, detection,” in 2021 51st Annual IEEE/IFIP International Conference on
“Hierarchical context merging: Better long context understanding for Dependable Systems and Networks (DSN). IEEE, 2021, pp. 224-236.
pre-trained 1lms,” 2024. [48] Z. Xue, Y. Zhang, and R. Xu, “Clone-based code method usage pattern
D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: Statement-level mining,” in Proceedings of the 30th IEEE/ACM International Conference
vulnerability detection using graph neural networks,” in Proceedings of on Program Comprehension, 2022, pp. 543-547.

the 19th international conference on mining software repositories, 2022, [49] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
pp- 596-607. docker hub,” in Proceedings of the Seventh ACM on Conference on
X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu, “Vulsniper: Data and Application Security and Privacy, 2017, pp. 269-280.

Focus your attention to shoot fine-grained vulnerabilities.” in IJCAI, [50] E. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Inter-
2019, pp. 4665-4671. net of things security: A survey,” Journal of Network and Computer
S. Woo, E. Choi, H. Lee, and H. Oh, “Vlscan: Discovering 1-day Applications, vol. 88, pp. 10-28, 2017.

vulnerabilities in reused c/c++ open-source software components using [51] “Cve-2021-20294,” https://nvd.nist.gov/vuln/detail/CVE-2021-20294,
code classification techniques,” in 32nd USENIX Security Symposium 2021.

(USENIX Security 23), 2023, pp. 6541-6556. [52] “Cpe - home,” https://nvd.nist.gov/products/cpe, 2009.

Q. Sun, L. Xu, Y. Xiao, F. Li, H. Su, Y. Liu, H. Huang, and W. Huo, [53] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic iden-
“Verjava: Vulnerable version identification for java oss with a two- tification of bug-introducing changes,” in 21st IEEE/ACM international
stage analysis,” in 2022 IEEE International Conference on Software conference on automated software engineering (ASE’06). IEEE, 2006,
Maintenance and Evolution (ICSME). IEEE, 2022, pp. 329-339. pp- 81-90.

S. Wu, R. Wang, K. Huang, Y. Cao, W. Song, Z. Zhou, Y. Huang, [54] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
B. Chen, and X. Peng, “Vision: Identifying affected library ver- “Fine-grained and accurate source code differencing,” in Proceedings of
sions for open source software vulnerabilities,” in Proceedings of the 29th ACM/IEEE international conference on Automated software
the 39th IEEE/ACM International Conference on Automated Software engineering, 2014, pp. 313-324.

Engineering, 2024, pp. 1447-1459. [55] J. Sallou, T. Durieux, and A. Panichella, “Breaking the silence: the
J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, threats of using llms in software engineering,” in Proceedings of the 2024
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 ACM/IEEE 44th International Conference on Software Engineering:
technical report,” arXiv preprint arXiv:2303.08774, 2023. New Ideas and Emerging Results, 2024, pp. 102-106.

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, [56] “Cve-2021-30499,” https://nvd.nist.gov/vuln/detail/CVE-2021-30499,
J. Liu, T. Remez, J. Rapin et al., “Code 1lama: Open foundation models 2021.

for code,” arXiv preprint arXiv:2308.12950, 2023. [57] “Cve-2017-14152, https://nvd.nist.gov/vuln/detail/CVE-2017-14152,
DeepSeek-Al, “Deepseek-v3 technical report,” 2024. [Online]. 2017.

Available: https://arxiv.org/abs/2412.19437 [58] “Cve-2021-33815,” https://nvd.nist.gov/vuln/detail/CVE-2021-33815,
“Joern - home,” https://joern.io/, 2014. 2021.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, ~ [59] Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan, and S. Li, “The
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod- impact of mislabeled changes by szz on just-in-time defect prediction,”
els are few-shot learners,” Advances in neural information processing IEEE transactions on software engineering, vol. 47, no. 8, pp. 1559-
systems, vol. 33, pp. 1877-1901, 2020. 1586, 2019.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, [60] “Cve-2020-35965,” https://nvd.nist.gov/vuln/detail/CVE-2020-35965,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language 2021.

model meets programming—the rise of code intelligence,” arXiv preprint [61] “Cve-2022-1355,” https://nvd.nist.gov/vuln/detail/CVE-2022- 1355,
arXiv:2401.14196, 2024. 2021.

Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, [62] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
“Automated repair of programs from large language models,” in 2023 N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
IEEE/ACM 45th International Conference on Software Engineering 2: Open foundation and fine-tuned chat models,” arXiv preprint
(ICSE). IEEE, 2023, pp. 1469-1481. arXiv:2307.09288, 2023.

S. B. Hossain, N. Jiang, Q. Zhou, X. Li, W.-H. Chiang, Y. Lyu, [63] “Gpt-4 turbo,” https://platform.openai.com/docs/models/gpt-4-turbo,
H. Nguyen, and O. Tripp, “A deep dive into large language 2023.

models for automated bug localization and repair,” arXiv preprint [64] A. Sheneamer and J. Kalita, “Code clone detection using coarse and
arXiv:2404.11595, 2024. fine-grained hybrid approaches,” in 2015 IEEE seventh international
Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi, conference on intelligent computing and information systems (ICICIS).
“Codet5+: Open code large language models for code understanding IEEE, 2015, pp. 472-480.

and generation,” arXiv preprint arXiv:2305.07922, 2023. [65] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
Y. Zhou, A. 1. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and code clone detection: incremental, distributed, scalable,” in 2010 IEEE
J. Ba, “Large language models are human-level prompt engineers,” arXiv International Conference on Software Maintenance. IEEE, 2010, pp.
preprint arXiv:2211.01910, 2022. 1-9.

B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential ~ [66] T. Sonnekalb, B. Gruner, C.-A. Brust, and P. Mider, “Generaliz-
of prompt engineering in large language models: a comprehensive ability of code clone detection on codebert,” in Proceedings of the
review,” arXiv preprint arXiv:2310.14735, 2023. 37th IEEE/ACM International Conference on Automated Software
“Cve-2017-14169,” https://nvd.nist.gov/vuln/detail/CVE-2017-14169, Engineering, 2022, pp. 1-3.

2017. [67] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving coupling detection with syntax and semantics fusion learning,” in Proceedings of
and cohesion of existing code,” in 11th working conference on reverse the 29th ACM SIGSOFT international symposium on software testing
engineering. IEEE, 2004, pp. 144-151. and analysis, 2020, pp. 516-527.

A. Almogahed, H. Mahdin, M. Omar, N. H. Zakaria, Y. H. Gu, M. A. [68] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
Al-Masni, and Y. Saif, “A refactoring categorization model for software Ilvm,” in Proceedings of the 25th international conference on compiler
quality improvement,” Plos one, vol. 18, no. 11, p. €0293742, 2023. construction, 2016, pp. 265-266.

M. Weiser, “Program slicing,” IEEE Transactions on software [69] M. Christakis and C. Bird, “What developers want and need from
engineering, no. 4, pp. 352-357, 1984. program analysis: an empirical study,” in Proceedings of the 31st
E. Aghaei, E. Al-Shaer, W. Shadid, and X. Niu, “Automated cve IEEE/ACM international conference on automated software engineering,
analysis for threat prioritization and impact prediction,” arXiv preprint 2016, pp. 332-343.

arXiv:2309.03040, 2023. [70] J. C. C. Rios, S. M. Embury, and S. Eraslan, “A unifying framework

for the systematic analysis of git workflows,” Information and Software
Technology, vol. 145, p. 106811, 2022.

https://arxiv.org/abs/2412.19437
https://joern.io/
https://nvd.nist.gov/vuln/detail/CVE-2017-14169
https://nvd.nist.gov/vuln/detail/CVE-2021-20294
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/vuln/detail/CVE-2021-30499
https://nvd.nist.gov/vuln/detail/CVE-2017-14152
https://nvd.nist.gov/vuln/detail/CVE-2021-33815
https://nvd.nist.gov/vuln/detail/CVE-2020-35965
https://nvd.nist.gov/vuln/detail/CVE-2022-1355
https://platform.openai.com/docs/models/gpt-4-turbo

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025

[71]

[72]

(73]

[74]

[75]

[76]

Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan, and S. Li, “The
impact of mislabeled changes by szz on just-in-time defect prediction,”
IEEE transactions on software engineering, vol. 47, no. 8, pp. 1559-
1586, 2019.

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza,
and R. Oliveto, “Evaluating szz implementations through a developer-
informed oracle,” in 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE). IEEE, 2021, pp. 436-447.

Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an auto-
mated vulnerability detection system based on code similarity analysis,”
in Proceedings of the 32nd annual conference on computer security

applications, 2016, pp. 201-213.

Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2244-2258, 2021.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC

(771

[78]

[79]

[80]

[81]

[82]

437.

S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE symposium on security
and privacy (SP). IEEE, 2017, pp. 595-614.

S. Noei, H. Li, and Y. Zou, “Detecting refactoring commits in machine
learning python projects: A machine learning-based approach,” 2024.
C. Abid, V. Alizadeh, M. Kessentini, T. d. N. Ferreira, and D. Dig, “30
years of software refactoring research: a systematic literature review,”
arXiv preprint arXiv:2007.02194, 2020.

E. A. AlOmar, H. AlRubaye, M. W. Mkaouer, A. Ouni, and M. Kessen-
tini, “Refactoring practices in the context of modern code review: An
industrial case study at xerox,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2021, pp. 348-357.

Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, H. Liang,
and H. Jin, “Scdetector: Software functional clone detection based
on semantic tokens analysis,” in Proceedings of the 35th IEEE/ACM
international conference on automated software engineering, 2020, pp.
821-833.

C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT international symposium on software testing

conference on computer and communications security, 2015, pp. 426—

and analysis, 2020, pp. 516-527.

	Introduction
	Background and Motivation
	Problem Statement
	Large Language Model
	Motivating Examples

	Design of Vercation
	Vulnerable Code Extraction
	Dangerous Flow Extraction
	Dangerous Flow-based Prompt Construction

	Code Clone Detection
	Syntactic Similarity Analysis
	Structural Similarity Analysis
	Statement Weight Allocation
	Code Clone Determination

	Vulnerable Version Range Determination

	Experimental Setup
	Dataset
	Baseline and Metrics
	Implementation Details

	Evaluation
	RQ1: Overall Effectiveness
	Comparison with NVD
	Comparison with SZZ-based Methods
	Comparison with Clone-based Methods

	RQ2: Architectural Contribution
	Program Slicing & LLM Ablation Study
	LLM Performance, Consistency, and Generalization
	Effectiveness of the Statement Weighting Strategy

	RQ3: Component Robustness
	Accuracy of Code Clone Detection
	Analysis of Refactoring Commits
	Threshold Sensitivity

	RQ4: Real-World Application

	Discussion
	Performance and Cost Analysis
	Comparison with Dynamic Analysis
	Threats to Validity
	Internal Validity
	External Validity

	Related work
	Vulnerability Fixing Commit Analysis
	Vulnerable Version Detection for OSS
	Code Refactoring Detection
	Code Clone Detection

	Conclusion and Future Work
	References

