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Software development involves collaborative interactions where stakeholders express opinions across various
platforms. Recognizing the sentiments conveyed in these interactions is crucial for the effective development
and ongoing maintenance of software systems. For software products, analyzing the sentiment of user feedback,
e.g., reviews, comments, and forum posts can provide valuable insights into user satisfaction and areas for
improvement. This can guide the development of future updates and features. However, accurately identifying
sentiments in software engineering datasets remains challenging.

This study investigates bigger large language models (bLLMs) in addressing the labeled data shortage
that hampers fine-tuned smaller large language models (sLLMs) in software engineering tasks. We conduct a
comprehensive empirical study using five established datasets to assess three open-source bLLMs in zero-
shot and few-shot scenarios. Additionally, we compare them with fine-tuned sLLMs, using sLLMs to learn
contextual embeddings of text from software platforms.

Our experimental findings demonstrate that bLLMs exhibit state-of-the-art performance on datasets marked
by limited training data and imbalanced distributions. bLLMs can also achieve excellent performance under a
zero-shot setting. However, when ample training data is available or the dataset exhibits a more balanced
distribution, fine-tuned sLLMs can still achieve superior results.

CCS Concepts: • Software and its engineering→Maintaining software.

Additional Key Words and Phrases: Large Language Models, Sentiment Analysis, Software Engineering

1 INTRODUCTION
Sentiment analysis (SA), or opinion mining, is the computational study of people’s opinions or
emotions toward entities [34]. SA holds significant practical value and has found diverse applica-
tions across a wide spectrum of domains, including but not limited to business, marketing, politics,
healthcare, and public advocacy [16]. Generally speaking, SA contains several tasks, such as senti-
ment classification [32], aspect-based sentiment classification [73], or hate speech detection [53].
Most existing Software Engineering (SE) research focuses on sentiment classification, i.e., assigning
a sentiment polarity (e.g., negative, neutral, and positive) to a given text unit. For simplicity, we
refer to the sentiment classification as SA in the rest of this article. SA has proven its utility in
various SE tasks, exemplified by its role in evaluating user reviews of mobile applications [31]
and identifying sentences conveying negative opinions about application programming interfaces
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(APIs) [74]. Given that SE is inherently a collaborative endeavor, comprehending the sentiments
expressed by different stakeholders across various platforms becomes imperative for the effective
development and maintenance of software systems.

Prior studies have demonstrated that general SA tools work well on social media posts or product
reviews while performing poorly on SE datasets [27, 58]. This discrepancy has spurred a growing
interest in developing SE-specific SA tools over the past decade [1, 10, 26]. These sentiment analysis
for SE (SA4SE) tools usually either propose a SE-specific lexicon [26] or a SE-specific model [1].
At the same time, several benchmarking studies on evaluating general SA tools and SE-specific
tools have been conducted [27, 31, 43, 71]. Zhang et al. [71] made the first attempt to embrace the
power of language models, i.e., small pre-trained large language models (sLLMs),1 for SA4SE. Zhang
et al. demonstrated that sLLMs outperform existing specialized SA4SE tools on the evaluation
datasets. However, several challenges persist in the field of SA4SE. First, the accuracy of sLLMs
can degrade when there is a lack of labeled data for fine-tuning. For instance, the Google Play
dataset [31], which contains app review comments, only has 341 labeled documents and among
them 25 are neutral ones. The fine-tuned sLLMs predicted none of the data points in the test set as
neutral. While acquiring more labeled data can help mitigate this issue, manually labeling large
volumes of data is time-consuming. The second challenge relates to the limitations of fine-tuning
itself. Fine-tuning sLLMs requires updating some of the model parameters with domain-specific
data. Lastly, the third challenge occurs in cross-platform settings [41], where SA4SE tools tend
to perform poorly. Models trained from one dataset may not generalize well when tested on a
different dataset, hindering the generalizability and effectiveness of existing SA4SE tools. Given
these challenges, there is a need to explore more effective solutions for SA4SE.
Recently, large language models have shown promising results in many areas, spanning from

general natural language processing (NLP) tasks to specialized applications like software develop-
ment. bLLMs are usually trained on massive corpora of texts and contain many parameters. For
instance, GPT-3 [6] contains 175 billion parameters. Llama [59] is trained on trillions of tokens
and contains 7B to 65B parameters. Given the large number of parameters, fine-tuning bLLMs for
every downstream task is impractical. These bLLMs permit in-context learning: they can be adapted
to a downstream task simply by providing it with a prompt (a natural language description of
the task) [4]. This adaptability has been a game-changer in reducing the need for domain-specific
training data, as bLLMs can leverage their pre-existing knowledge to excel in diverse applications.
In-context learning has drastically reduced the domain-specific training examples required for a par-
ticular application [13]. bLLMs can make predictions conditioned on a few input-output examples
without updating model parameters and achieve success in various tasks [6, 13]. Nevertheless, their
performance in SA4SE remains largely unexplored. The intriguing prospect of adopting bLLMs in
this context lies in their ability to potentially address the challenges associated with fine-tuning
sLLMs and the limitations observed in cross-platform settings.

To fill this gap, our work embarks on a journey to explore the effectiveness of bLLMs for SA4SE.
To investigate the effectiveness of bLLMs for SA4SE, we conducted a comprehensive empirical study
on five existing SE datasets. We first evaluate bLLMs under zero-shot and few-shot settings. For the
zero-shot setting, we experimented with three different prompt templates. For the few-shot setting,
we experimented with 1-, 3-, and 5-shot. The experimental results demonstrate that bLLMs can
perform well under a zero-shot setting, while few-shot learning can further boost the performance.
However, adding more shots does not guarantee an improvement in the performance. We also

1To distinguish from the recent larger sizes of large language models, we consider sLLMs as relatively smaller sizes of large
language models that can be easily fine-tuned locally, such as BERT, RoBERTa, and XLNet. sLLMs usually contain <1B
parameters. We refer to the bigger large language models, which contain billions of parameters as bLLMs.
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compared prompting bLLMs with fine-tuning sLLMs. We find that, on the dataset that lacks training
data and the data is highly imbalanced, bLLMs can surpass sLLMs by a large gap. For the datasets
that contain sufficient training data and more balanced data, sLLMs may still be preferred.

Our contribution can be summarized as follows:

• Our work is the first study to examine the effectiveness of open-source bLLMs on the SA4SE
task.

• We evaluate three open-source bLLMs under zero and few-shot settings.
• We compare fine-tuned sLLMs with bLLMs on five SE datasets collected from five distinct
platforms.

The remaining parts of this work are as follows: Section 2 introduces the background of our work.
Section 3 discusses about our experimental setup. Section 4 presents the results of our empirical
study. Section 5 discusses the additional experiments, the implications of our findings, and the
threats to validity. Section 6 concludes this work and discusses future work.

2 RELATEDWORK
In recent years, SA4SE has emerged as a vibrant and active research area within SE. LLMs also have
been widely applied in the SE domain. This section provides an overview of the relevant literature,
primarily focusing on the techniques proposed to boost SA4SE accuracy and empirical studies in
SA4SE.

2.1 Boosting SA4SE Accuracy
In the past decades, many techniques have been proposed to improve the effectiveness of identifying
sentiments or emotions in the SE domain [1, 3, 7, 8, 10, 11, 22, 24–26, 40].
Chen et al. [10] propose SEntiMoji, an emoji-powered learning approach for SA in SE. They

employ emotional emojis as noisy labels of sentiments and propose a representation-learning
approach that uses both Tweets and GitHub posts containing emojis to learn sentiment-aware
representations for SE-related texts. In the evaluation, they compare SEntiMoji with four SA4SE
tools on sentiment polarity benchmark datasets. The experimental results show that SEntiMoji can
significantly improve the performance.
Furthermore, Chen et al. [11] include an additional evaluation of SEntiMoji on the emotion

detection task. They also compared it with four existing emotion detection methods, including
DEVA [25], EmoTxt [8], MarValous [24], and ESEM-E [40]. The experimental results on the five
benchmark datasets covering 10,096 samples for sentiment detection and four benchmark datasets
covering 10,595 samples for emotion detection demonstrate that SEntiMoji is effective.
Besides developing a new SA4SE tool, another research line aims at improving SA accuracy

by handling existing challenges, such as labeled data scarcity. Imran et al. [22] address the data
scarcity problem by automatically creating new training data using a data augmentation technique.
They specifically target the data augmentation strategy to improve the performance of emotion
recognition by analyzing the types of errors made by popular SE-specific emotion recognition tools.
Their results show that when trained with their best augmentation strategy, three existing emotion
classification tools, i.e., ESEM-E, EMTk, and SEntiMoji, received an average improvement of 9.3%
in micro-F1 score.
As previously discussed in Section 1, Zhang et al. [71] introduced the approach of fine-tuning

sLLMs for SA4SE. Our approach distinguishes itself from the aforementioned research by pioneering
the use of prompting bLLMs for SA4SE. Alongside these efforts, we are collectively working towards
advancing the accurate identification of sentiment within the SE field.
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2.2 Empirical Studies in SA4SE
With the proliferation of domain-specific SA4SE tools, a series of empirical investigations have been
conducted to illuminate our understanding of this field’s progress and challenges [27, 28, 30, 31, 42–
44].

Novielli et al., in their recent study [42], delve into the critical question of how off-the-shelf, SE-
specific SA tools affect the conclusion validity of empirical studies in SE. They begin by replicating
two prior studies that explore the role of sentiment in security discussions on GitHub and question-
writing on Stack Overflow. Subsequently, they extend these studies by assessing the level of
agreement between different SA tools and manual annotations, using a gold standard dataset
comprising 600 documents. The experimental findings from this research reveal that when applied
out-of-the-box, various SA4SE tools may yield conflicting results at a granular level. Consequently, it
becomes imperative to consider platform-specific fine-tuning or retraining to account for differences
in platform conventions, jargon, or document lengths.
Obaidi et al. [44] conducted a systematic mapping study to comprehensively examine SA tools

developed for or applied in the SE domain. This study summarizes insights drawn from 106 papers
published up to December 2020, focusing on six key aspects: (1) the application domain, (2) the
purpose of SA, (3) the datasets used, (4) the approaches for developing SA tools, (5) the utilization
of pre-existing tools, and (6) the challenges faced by researchers. Based on their findings, neural
networks emerge as the top-performing approach, with BERT identified as the most effective tool.

Beyond the scope of sentiment classification, some researchers have explored broader facets of
SA4SE, such as opinion mining. Opinion mining encompasses a wider spectrum of tasks than the
sentiment polarity identification typically evaluated in SA4SE studies. It includes SA, subjectivity
detection, opinion identification, and joint topic SA. In a comprehensive systematic literature
review, Lin et al. investigated 185 papers on opinion mining in Software Engineering [30], shedding
light on the diverse research efforts in this area.
Each of these existing empirical studies has contributed valuable insights into the evolving

landscape of SA4SE. Notably, our work stands apart from these studies as it introduces the use of
bLLMs to this domain for the first time.

3 EXPERIMENTAL SETUP
3.1 ResearchQuestions
In this work, we plan to answer the following research questions (RQs):
RQ1: How do various prompts affect the performance of bLLMs in zero-shot learning for

the SA4SE task?

In this RQ, our initial focus is exploring the zero-shot learning scenario, where bLLMs
are prompted without providing any labeled data. Prior studies have unveiled that bLLMs
exhibit varying results even when prompted with semantically similar queries [36, 39, 47].
Additionally, earlier research findings have emphasized the substantial impact of different
word orders within the prompt templates on the predictions [14, 38]. Nevertheless, it is yet
to be determined if bLLMs exhibit varying performance when prompted with templates
that have subtle differences on the SA4SE task. We experiment with slight variations of the
prompts to precisely measure the bLLMs’ sensitivity to nuanced linguistic cues. This approach
is essential in controlled experimental settings where isolating the impact of single variables
is crucial. By altering the prompts minimally, we can more accurately attribute any observed
differences in performance to these specific changes, thereby gaining insight into how the
model processes and interprets instructions at a granular level. Additionally, we believe the
commands used to conduct SA are rather straightforward, making it challenging to create two
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Input: A chat between a 
curious user and an artificial 
intelligence assistant. The 
assistant gives helpful, 
detailed, and polite answers 
to the user's questions. 

USER: Please perform 
Sentiment Classification task. 
Given the sentence from APP 
reviews, assign a sentiment 
label from ['negative', 'neutral', 
'positive']. Return label only 
without any other text. 

ASSISTANT: Sure!</s> 

Sentence: its nice this apps is 
must lovely 

Output: ASSISTANT: positive 

Prompt 0 Prompt 1
Input: A chat between a 
curious user and an artificial 
intelligence assistant. The 
assistant gives helpful, 
detailed, and polite answers 
to the user's questions. 

USER: Please categorize the 
sentiment expressed in the 
following sentence from APP 
reviews as either (1) positive, 
(2) neutral, or (3) negative. 

ASSISTANT: Sure!</s> 

Sentence: its nice this apps is 
must lovely 

Output: ASSISTANT: positive 

Prompt 2
Input: A chat between a 
curious user and an artificial 
intelligence assistant. The 
assistant gives helpful, 
detailed, and polite answers 
to the user's questions. 

USER: I will give you a 
sentence from APP reviews. 
You need to reply with the 
sentiment expressed in the 
following sentence, either (1) 
positive, (2) neutral, or (3) 
negative. 

ASSISTANT: Sure!</s> 

Sentence: its nice this apps is 
must lovely 

Output: ASSISTANT: positive 

Fig. 1. The zero-shot prompt templates we utilized when running Vicuna [12] andWizardLM [64]

prompts with substantial changes. To evaluate the effectiveness of different prompt templates
in generating accurate predictions, we hypothesize that there are significant differences
in performance metrics (macro-F1, micro-F1, and AUC scores) among the various prompt
templates. Specifically, we propose the following hypotheses for pairwise comparisons:
– Prompt 0 vs. Prompt 1
∗ H0.1.1 (Null Hypothesis): There is no significant difference in the performance metrics
between Prompt 0 and Prompt 1.

∗ H1.1.1 (Alternative Hypothesis): There is a significant difference in the performance
metrics between Prompt 0 and Prompt 1.

– Prompt 0 vs. Prompt 2
∗ H0.1.2 (Null Hypothesis): There is no significant difference in the performance metrics
between Prompt 0 and Prompt 2.

∗ H1.1.2 (Alternative Hypothesis): There is a significant difference in the performance
metrics between Prompt 0 and Prompt 2.

– Prompt 1 vs. Prompt 2
∗ H0.1.3 (Null Hypothesis): There is no significant difference in the performance metrics
between Prompt 1 and Prompt 2.

∗ H1.1.3 (Alternative Hypothesis): There is a significant difference in the performance
metrics between Prompt 1 and Prompt 2.

We will employ a Wilcoxon signed-rank test with Bonferroni correction for multiple com-
parisons to assess the significance of the differences between these prompt templates. The
corrected alpha threshold for significance will be set at 0.0167 to account for the multiple
pairwise comparisons.

RQ2: How do various shots affect the performance of bLLMs in few-shot learning for the

SA4SE task?

In this RQ, we evaluate whether bLLMs exhibit enhanced performance in scenarios with a
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Input: <s>[INST] <<SYS>> 

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and 
polite answers to the user's questions. 

<</SYS>> 

Please perform Sentiment Classification task. Given the sentence from APP reviews, assign a sentiment label 
from ['negative', 'neutral', 'positive']. Return label only without any other text. 

Example Sentence: this app is a waste of time. i can log in but it always freezes and eventually crashes. i do 
not feel confident with the security on this app if wf can leave us hanging with a horrible app for such a big 
bank. uninstalled htc one 

Label: negative 

[/INST] 

Sure! 

</s><s>[INST] 

Sentence: good it's good app 

Label: 

[/INST] 

Output: Label: positive

Demonstration

Fig. 2. Few-shot prompt template (with 𝑘 = 1) utilized by Llama 2-Chat [60].

limited number of examples available. In contrast to zero-shot learning, few-shot learning
incorporates an extra “Demonstration” component. While previous studies, such as Zhang et
al. [72], indicate that few-shot learning may surpass zero-shot learning in certain aspects,
contrasting findings by Reynolds et al. [49] suggest that zero-shot prompts can significantly
outperform few-shot prompts in some NLP tasks. Nonetheless, it is still unclear whether
bLLMs derive greater benefits from few-shot learning, specifically in the SA4SE task. We aim
to test the following null hypothesis: H0.2: there is no significant difference in the results
obtained under few-shot learning compared to those from zero-shot learning.

RQ3: How do prompting bLLMs compare with fine-tuned sLLMs on the SA4SE task?

Prior work has shown that fine-tuning sLLMs can achieve state-of-the-art results on the
SA4SE task. However, the effectiveness of prompting bLLMs compared to fine-tuning sLLMs
remains an open question. To address this, we compare the best macro-F1 and micro-F1
scores achieved through prompting bLLMs with those from fine-tuned sLLMs. To further
explore this comparison, we test the null hypothesis: H0.3: There is no significant difference
in results obtained from prompting bLLMs and fine-tuning sLLMs.

RQ4: What are the factors leading to the misclassification of sentiment labels by bLLMs?

To gain a deeper understanding of the reasons behind incorrect sentiment label classifications
by bLLMs in the context of software engineering, we intend to carry out a detailed manual
analysis.

3.2 Method
In this section, we present the steps performed to answer our research questions.

For RQ1, we investigate how various prompt templates affect the results. Given the straightfor-
ward nature of SA, our objective is to formulate equally straightforward prompts. These prompts
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encompass two key components: the Task Description and the Output Format. The Task Descrip-
tion serves the purpose of elucidating the task clearly and concisely. In our specific context, the
task pertains to SA, and we articulate it through various expressions within the three templates.
Importantly, the sentence origin (e.g., from APP reviews, from Stack Overflow) remains consis-
tent across all prompt templates, enabling the distinction of diverse contexts and domains. The
Output Format component is designed to provide bLLMs with guidance for generating responses
in a specific format, facilitating sentiment label extraction. To maintain generality, we employ an
identical prompt template for all five datasets.2 Figure 1 shows the three prompt templates we used
for zero-shot setting. While all prompt templates share a semantic similarity, they differ in their
syntactic structure.

Our inspiration for the first prompt template (i.e., Prompt 0) draws from Zhang et al. [72]. They
designed the prompt to include only essential components, namely the task name, task definition,
and output format. In addition to these components, considering the specific context of SE which
differs from a general context, we have incorporated the sentence origin. This addition aims to
enrich the context provided to the bLLMs, enhancing their effectiveness in this specialized field. For
Prompt 1 and Prompt 2, we intentionally implemented subtle variations, focusing specifically on
the aspects of structure and tone. Regarding the structure of the prompts, Prompt 0 stands out as the
most formal and task-oriented. In contrast, Prompts 1 and 2 introduce sentiment categories in an
option-based format (1, 2, 3), rather than a straightforward list. This choice gives these prompts a
more interactive and engaging feel, making them especially suitable for situations that require user
interaction. In addition, Prompt 2 presents a more interactive scenario where the user is actively
involved (“I will give you a sentence...”). This format implies a back-and-forth interaction. In terms
of tone, Prompt 1 is slightly more engaging than Prompt 0, as it reads more like a request than a
command. Prompt 2 further amplifies this interactive quality by establishing a dialogue-like contex.

For RQ2, in the context of few-shot learning, we leverage the best-performing zero-shot prompt
template, namely Prompt 0. We enrich Prompt 0 with various numbers of examples filled in the
Demonstration part. The demonstration part encompasses 𝑘 (𝑘 = 1, 3, 5) examples and corre-
sponding ground-truth labels, adhering to the desired format. Figure 2 illustrates the few-shot
prompt template employed by Llama 2-Chat on the GooglePlay dataset. In the depicted figure,
the demonstration segment (enclosed within the red box) comprises only one example. In the
case of a 3-shot or 5-shot setup, this demonstration section would encompass a greater number
of example sentences and their corresponding gold labels. We systematically sampled 1-, 3-, and
5-examples from the training data of each dataset, subsequently populating the demonstration
segment within the template. This approach ensures that under the 𝑘-shot setting, different bLLMs
receive the same set of examples.
For RQ3, we aim to compare prompting bLLMs and fine-tuning sLLMs. Thus, we ensure that

both bLLMs and sLLMs make predictions on the same test data set. We report the highest macro-
and micro-F1 scores achieved by the bLLM on the dataset as the result achieved by the bLLM.
In RQ4, we conduct a quantitative and qualitative analysis to understand the main cause of

misclassification made by bLLMs. For the quantitative aspect, we focus on the results from the
most effective templates. Specifically, we analyze the results from Prompt 0 for zero-shot learning
and from the 5-shot prompt for few-shot learning. In the qualitative part of our study, we utilize the
error categorization framework established by Novielli et al. [41, 43]. Employing these predefined
categories, our analysis involved two authors (from here on, evaluators) independently assigning a

2There is only a minor difference in the Jira dataset, given it only contains two sentiments, i.e., negative and positive. We
reduced the scope to only two options in the templates used by Jira.
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category to each document in our study. It is important to note that not all categories identified by
Novielli et al. were necessarily covered in each document. Subsequently, the evaluators engaged in
discussions to resolve any conflict and reach a consensus.

3.3 Dataset
In this work, we experimented with the existing manually labeled datasets from five distinct plat-
forms: Gerrit, GitHub, Google Play, Jira, and Stack Overflow. For simplicity, we refer to these datasets
using abbreviations: Gerrit [1], GitHub [41], GooglePlay [31], Jira [31], and StackOverflow [31].

Gerrit Dataset: Ahmed et al. [1] meticulously labeled this dataset. They initiated their process by
mining code review repositories from 20 prominent open-source software (OSS) projects. Three
raters individually labeled the selected code review comments and resolved conflicts through
discussion. The dataset was refined into two classes: negative and non-negative, forming the final
dataset.

GitHub Dataset: Novielli et al. [41] curated the GitHub dataset, which comprises pull request and
commit comments. Sentiment was assessed based on the entire comment, rather than isolated
portions. The labeling process began with the manual classification of 4,000 comments, followed
by a semi-automatic approach using Senti4SD [7], which required manual confirmation of the
automatically assigned polarity labels.

GooglePlay, Jira, and StackOverflow Datasets: Lin et al. [31] provided three datasets, each
with its unique characteristics:

• GooglePlayDataset: Originally collected by Chen et al. [9], this dataset contains user reviews
of Android apps on Google Play. Villarroel et al. [62] selected a subset of reviews from Chen
et al.’s dataset, and Lin et al. further sampled 341 reviews. Lin et al. performed the manual
labeling of sentiment, where two annotators individually classified text as positive, neutral,
or negative. In cases of disagreement, a third evaluator was involved for resolution.

• Jira Dataset: This dataset comprises Jira issue comment sentences and was originally
collected and labeled by Ortu et al. [45]. However, Ortu et al.’s dataset only provided emotional
labels, such as love, joy, anger, and sadness. Lin et al. mapped sentences labeled with love or
joy to “positive” and those labeled with anger or sadness to “negative”.

• StackOverflow Dataset: Lin et al. gathered and labeled the StackOverflow dataset, ex-
tracting 5,073,452 sentences from the latest Stack Overflow dump available in July 2017.
The sentences were selected based on two criteria: they had to be tagged with “Java”, and
they needed to contain keywords such as “library/libraries” or “API(s)”. A random sample of
1,500 sentences was manually labeled by assigning a sentiment score to each sentence. Two
annotators carried out the manual annotation individually, with conflicts resolved through
discussion.

We split each dataset with a ratio of 8:1:1, which stands for training, validation, and test, respec-
tively. We did a stratified split where we kept the original class distribution in training, validation,
and test. Since running bLLMs is expensive, they usually contain billions of parameters, we did
a sampling on all the test data with a confidence level of 95% and a margin of error of +/- 5%.3
Similarly, we also kept the class distribution the same as in the original whole dataset.

Table 1 presents the statistics of investigated datasets, specifically the average number of tokens
per document. Notably, Gerrit and GooglePlay exhibit longer text, likely due to the inclusion

3We included all the provided test data in the GooglePlay dataset, as the number of sampled data is only 2 data points
fewer than the whole test data.
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Table 1. Dataset statistics. Neg. stands for negative, Neu. stands for neutral, Pos. stands for positive, and

Non-neg. stands for non-negative.

Dataset Total

Test Sampled Avg.

Test Tokens

Gerrit 1,600: 398 (Neg.) 1,202 (Non-neg.) 160 114 29
GitHub 7,122: 2,087 (Neg.) 3,022 (Neu.) 2,013 (Pos.) 713 250 19
GooglePlay 341: 130 (Neg.) 25 (Neu.) 186 (Pos.) 35 35 27
Jira 926: 636 (Neg.) 290 (Pos.) 93 76 9
StackOverflow 1,500: 178 (Neg.) 1,191 (Neu.) 131 (Pos.) 150 109 11

of code review and APP review comments, which often span multiple sentences. Although the
GitHub dataset also comprises pull request and commit comments, they are typically short in nature.
Conversely, the StackOverflow dataset and Jira dataset include sentences from Stack Overflow
and Jira, respectively. While some document units in these datasets contain multiple sentences
and others just one, we collectively refer to them as documents. Note that the Gerrit, GooglePlay,
Jira, and StackOverflow datasets investigated in our study are imbalanced, while the GitHub
dataset is more balanced.

3.4 Evaluated Language Models
bLLMs. We include three recently proposed bLLMs based on their performance in the MMLU
benchmark on the chatbot leaderboard 4 in August 2023; the model name in the parenthesis is the
exact model variant we used on the Hugging Face platform [63].

• Llama 2-Chat (meta-llama/Llama-2-13b-chat-hf) [60] is a fine-tuned version of Llama
2 that is optimized for dialogue use cases. Llama 2 uses the standard Transformer archi-
tecture [61] and it applies pre-normalization with RMSNorm [69], the SwiGLU activation
function [54], and rotary positional embeddings [56]. Llama 2 made several improvements
over Llama 1, including but not limited to more robust data cleaning, trained on 40% more
total tokens, and doubled the context length.

• Vicuna (lmsys/vicuna-13b-v1.5) [12] is a chatbot trained by fine-tuning Llama 2 on 70K
user-shared ChatGPT conversations. To better handle multi-turn conversations and long
sequences, Vicuna is trained with the enhanced training script from Alpaca [57].

• WizardLM (WizardLM/WizardLM-13B-V1.2) [64] is another fine-tuned version of Llama 2.
The authors propose Evol-Instruct, which is a novel method using bLLMs instead of humans
to automatically mass-produce open-domain instructions of various complexity levels to
improve the performance of bLLMs. The resulting bLLMs by fine-tuning Llama 2 with the
evolved instructions is calledWizardLM.

sLLMs.We include all the four sLLMs evaluated by Zhang et al. [71], i.e., BERT [15], RoBERTa [35],
ALBERT [29], XLNet [67]. In addition, we also include a lightweight and memory-efficient variant
of BERT, i.e., DistilBERT. We briefly describe these models. They mainly differ in the pre-training
tasks adopted. We also present the exact model we used on the Hugging Face platform [63] in the
parenthesis.

• BERT (bert-base-uncased) [15], which stands for Bidirectional Encoder Representations
fromTransformers, introduces two key pre-training tasks. The first is mask languagemodeling

4https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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(MLM), where BERT learns to predict masked words in a given text. Additionally, BERT
incorporates the next sentence prediction (NSP) task, training to determine whether the
second sentence logically follows the first or is a random sentence from the training data.

• RoBERTa (roberta-base) [35] is short for “A Robustly Optimized BERT Pretraining Ap-
proach”. RoBERTa is a BERT variant distinguished by its innovative training strategies and
hyperparameter choices. Notably, it eliminates the NSP task, employs a larger batch size,
trains on a larger corpus than BERT, and utilizes a dynamic masking strategy during training.

• ALBERT (albert-base-v2) [29], or “A Lite BERT”, is another BERT variant designed to
reduce model size and computational requirements while maintaining or improving perfor-
mance. ALBERT retains the MLM task but replaces the NSP task with the sentence order
prediction (SOP) task. In SOP, ALBERT is trained to predict whether pairs of sentences are
correctly ordered or if their positions have been swapped.

• XLNet (xlnet-base-cased) [67] primarily focuses on capturing contextual information
and long-range dependencies in text. It employs an autoregressive pretraining method and
introduces permutation language modeling, where word order in a sentence is randomly
shuffled, and the model is trained to predict the original sequence. XLNet also incorporates
innovations such as the “two-stream self-attention” mechanism.

• DistilBERT (distilbert-base-uncased) [51] is a distilled and smaller version of the BERT
model. DistilBERT is designed to be faster and more memory-efficient. DistilBERT adopts
model compression or knowledge distillation to learn from a teacher BERT to capture the
same knowledge but with fewer parameters. As DistilBERT combines efficiency and strong
performance, it has been popular in research and industry settings.

3.5 Evaluation Metrics
Following prior works [41, 43, 71], we also report macro- and micro-averaged precision, recall, and
F1-score.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
(2)

𝐹1 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3)

𝑀𝑎𝑐𝑟𝑜-𝐹1 =
𝐹1𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹1𝑛𝑒𝑢𝑡𝑟𝑎𝑙 + 𝐹1𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

3
(4)

Macro-averaged metrics: To get the macro-averaged metrics, we calculate each class and find
their unweighted mean. In our context, if we have three labels, i.e., negative, natural, and positive,
we separately calculate the F1 for each class (See Formula 1-3). Macro-F1 would be the average of
the F1 for these three classes (See Formula 4).

Micro-averagedmetrics: Formulate 5, 6, and 7 shows how to calculate𝑚𝑖𝑐𝑟𝑜-𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,𝑚𝑖𝑐𝑟𝑜-𝑟𝑒𝑐𝑎𝑙𝑙 ,
and𝑚𝑖𝑐𝑟𝑜-𝐹1.

𝑀𝑖𝑐𝑟𝑜-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
Total TP

Total TP + Total FP
(5)
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𝑀𝑖𝑐𝑟𝑜-𝑅𝑒𝑐𝑎𝑙𝑙 =
Total TP

Total TP + Total FN
(6)

𝑀𝑖𝑐𝑟𝑜-𝐹1 =
2 × (𝑀𝑖𝑐𝑟𝑜-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑀𝑖𝑐𝑟𝑜-𝑅𝑒𝑐𝑎𝑙𝑙)

𝑀𝑖𝑐𝑟𝑜-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑀𝑖𝑐𝑟𝑜-𝑅𝑒𝑐𝑎𝑙𝑙
(7)

Recall that 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are short for the true positives (i.e., where the model correctly
predicts a positive class, and it matches the ground truth), false positives (i.e., where the model
incorrectly predicts a positive class, but the ground truth is actually a negative class), and false
negatives (i.e., where the model incorrectly predicts a negative class, but the ground truth is actually
a positive class). “Total TP” represents the sum of true positives, “Total FP” represents the sum of
false positives, and “Total FN” represents the sum of false negatives over all classes.
We report both the macro-F1 and micro-F1 scores as they show the balance between precision

and recall. We attach the full result in our replication package.5 From these formulas, we can find
that micro-F1 emphasizes overall accuracy, while macro-F1 gives equal weight to each class’s
performance. As we do not give weights to the classes and want to consider the F1 in each class,
we choose macro-F1 as the main metric. This choice of preferring macro-F1 also aligns with the
prior work [41].

AUC: Other than the widely used F1 score, we also report the area under the ROC curve (AUC) to
evaluate the performance of the models. AUCmeasures the entire two-dimensional area underneath
the entire ROC curve. AUC is a popular metric for binary classification tasks, measuring the model’s
ability to distinguish between positive and negative classes. AUC values range from 0 to 1, with
higher values indicating better performance. Some of our datasets have three classes, so we use the
one-vs-rest strategy to compute the AUC of each class against the rest [19].

3.6 Implementation Details
Note that we only fine-tune sLLMs and prompt bLLMs, while (1) not fine-tuning bLLMs as bLLMs
contain a large number of parameters, it is expensive to fine-tune them; and (2) not prompting
sLLMs as they usually are pre-trained with the MLM task mentioned before. They predict missing
words in a sentence, which differs from the autoregressive nature of models like GPT-3 that generate
text sequentially based on a prompt. This architectural difference makes it less straightforward to
use BERT for prompt-style tasks. sLLMs, like BERT, were designed for understanding existing text,
not generating new text sequences. For example, if we input the prompt “this app is a waste of
time...” (as shown in Figure 2) into BERT, it will produce contextualized representations for each
token but will not generate a sentiment token or new text. BERT’s pre-training objective focused
on representing input text, not text generation. To adapt BERT for sentiment classification, we
fine-tune it on a labeled dataset to predict sentiment labels (positive, negative, neutral) based on the
input text. During fine-tuning, the model learns to leverage BERT’s contextualized representations
for accurate predictions but does not learn to generate new sequences. Hence, we fine-tune sLLMs
for classification tasks like sentiment analysis, not text generation. In contrast, bLLMs like Llama
2-Chat are pre-trained for text generation by predicting the next token based on context, making
them better suited for generating coherent text sequences from prompts.

Prompting bLLMs. We use heuristics to extract the sentiment returned by bLLMs. When bLLMs
consider it hard to decide the sentiment (they replied with a sentiment other than the three polarities,
e.g., “mixed”), we label the predicted sentiment as “neutral”. As there is no “neutral” sentiment in
the Jira dataset, if any bLLM predicts the sentiment as “neutral”, we label the predicted sentiment
5https://github.com/soarsmu/LLM4SA4SE
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Fig. 3. One example to get the prediction probability scores from the bLLMs.

as the opposite of the ground-truth label. In the few-shot setting, we select 𝑘 examples (“shots”) at
random from the training set ((𝑘 = {1, 3, 5})), and for each example, we append its ground-truth
label. To make a new prediction for a new example, we append one sentence from the test set.
It is important to note that bLLMs do not directly provide probability scores for each class. To

obtain these scores, we use the predicted result as a new prompt and ask the model to give the
probability scores for each class. For example, Figure 3 illustrates an instance using the Vicuna
model with Prompt 0 in a zero-shot setting on the GooglePlay dataset. Lines 1-7 show the original
Prompt 0, while Line 8 displays the sentiment predicted by Vicuna. Lines 9-10 are added to the
original prompt to request the model to provide probability scores for each class. Lines 11-13 then
present the probability scores given by the model. We proceed to extract these probability scores
for each class. If the total probability scores do not sum to 1, we normalize the scores by dividing
each score by the total sum of the scores.

Fine-tuning sLLMs. We fine-tuned all the sLLMs with the training data. For each epoch, we
calculate their macro-F1 score on the validation data. We fine-tune each sLLM 5 epochs. We save
the best-performing model, i.e., achieving the highest macro-F1 score on the validation data, as
the final model. We then evaluate the best model on the test data. We used the following sets of
hyper-parameters for all the sLLM: learning rate of 2e-5, batch size of 32, and max length of 256.

4 RESULTS
4.1 RQ1: Impact of different prompts on the performance of bLLMs with zero-shot

learning
It is worth noting that Vicuna and WizardLM adopt the same style of prompt template; while
Llama 2-Chat employs a different prompt template in pre-training, resulting in slight differences
in prompt formats6 (We show an example of Llama 2-Chat prompt in Figure 2, where the zero-shot
template is the same template excluding the “Demonstration” part).

Table 2 presents the outcomes obtained from our investigation into three distinct bLLMs using
three distinct zero-shot prompts. Notably, we observe varying performance levels among these
bLLMs when employed with different prompt templates. Furthermore, it is noteworthy that even

6https://huggingface.co/blog/llama2#how-to-prompt-llama-2
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Table 2. Zero-shot Performance: Comparative Results of LLMs Across Five Datasets. Cells highlighted in red

indicate the highest scores achieved among the three prompts executed by each respective model.

Model Variant Gerrit GitHub GooglePlay Jira StackOverflow

Macro-F1

0 0.73 0.68 0.89 0.83 0.45
1 0.71 0.64 0.89 0.71 0.5Llama 2-Chat

2 0.75 0.68 0.89 0.78 0.51

0 0.73 0.72 0.98 0.85 0.59
1 0.73 0.65 0.74 0.69 0.56Vicuna

2 0.7 0.67 0.82 0.75 0.53

0 0.69 0.71 0.8 0.81 0.41
1 0.69 0.7 0.82 0.82 0.59WizardLM

2 0.68 0.7 0.79 0.77 0.52

Micro-F1

0 0.82 0.68 0.91 0.84 0.61
1 0.82 0.64 0.91 0.71 0.72Llama 2-Chat

2 0.83 0.68 0.94 0.79 0.64

0 0.81 0.72 0.97 0.86 0.78
1 0.82 0.66 0.8 0.71 0.82Vicuna

2 0.82 0.67 0.89 0.76 0.78

0 0.8 0.71 0.86 0.82 0.65
1 0.8 0.7 0.89 0.83 0.73WizardLM

2 0.79 0.7 0.89 0.78 0.67

0 0.65 0.64 0.88 0.80 0.65
1 0.51 0.59 0.65 0.79 0.63Llama 2-Chat

2 0.49 0.54 0.65 0.81 0.47

0 0.73 0.83 0.997 0.996 0.71
1 0.67 0.74 0.96 0.97 0.63Vicuna

2 0.54 0.74 0.91 0.95 0.50

0 0.64 0.81 0.83 0.97 0.59
1 0.64 0.79 0.95 0.96 0.71

AUC

WizardLM

2 0.57 0.79 0.92 0.96 0.62

when using the same bLLM, the optimal prompt template can vary depending on the dataset under
consideration.

Specifically, regarding the macro-F1 score, Prompt 0 emerges as the most effective choice, yielding
the highest scores in 10 instances. Following closely, Prompt 1 leads in 6 instances. Interestingly,
Prompt 2, while achieving the top performance on only 4 occasions, occasionally surpasses Prompt
1 by a significant margin, notably in the case of the Llama 2-Chat within the StackOverflow
dataset. Regarding the micro-F1 scores, both Prompt 0 and Prompt 1 achieved the highest scores 7
times, while Prompt 2 ranked the first 5 times. Regarding the AUC value, Prompt 0 emerges as the
most effective choice, yielding the highest scores in 12 instances. Prompt 1 and Prompt 2 achieves
the top performance on only 2 and 1 occasions, respectively. These results show that Prompt 0 can
achieve overall best results considering all the metrics.
Table 3 provides an insight into the variance within each result group under the zero-shot

setting. We define a result group as results generated by the same bLLM when applied to the same
dataset with varying prompts. This analysis aims to underscore the impact of prompt selection on
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Table 3. Zero-shot: Score difference between the highest and lowest ones with each LLM on one dataset and

the value in the parenthesis shows the difference percentage.

Model Gerrit GitHub GooglePlay Jira StackOverflow

Macro-F1

Llama 2-Chat 0.04 (5.6%) 0.04 (6.3%) 0 0.12 (16.9%) 0.06 (13.3%)

Vicuna 0.03 (4.3%) 0.07 (10.8%) 0.24 (32.4%) 0.16 (23.2%) 0.06 (11.3%)

WizardLM 0.01 (1.5%) 0.01 (1.4%) 0.03 (3.8%) 0.05 (6.5%) 0.18 (43.9%)

Avg. Diff 3.80% 6.17% 12.07% 15.53% 22.83%

Micro-F1

Llama 2-Chat 0.01 (1.2%) 0.04 (6.3%) 0.03 (3.3%) 0.13 (18.3%) 0.11 (18.0%)

Vicuna 0.01 (2.1%) 0.06 (12.5%) 0.17 (35.4%) 0.15 (31.3%) 0.04 (8.3%)

WizardLM 0.01 (1.3%) 0.01 (1.4%) 0.03 (3.5%) 0.05 (6.4%) 0.08 (12.3%)

Avg. Diff 1.5% 6.7% 14.0% 18.7% 12.9%

AUC

Llama 2-Chat 0.16 (31.9%) 0.09 (17.3%) 0.23 (36.0%) 0.02 (2.3%) 0.18 (37.7%)

Vicuna 0.19 (34.6%) 0.09 (11.8%) 0.09 (9.4%) 0.05 (5.4%) 0.21 (42.1%)

WizardLM 0.07 (12.8%) 0.02 (2.8%) 0.13 (15.2%) 0.02 (1.7%) 0.12 (20.2%)

Avg. Diff 26.4% 10.6% 20.2% 3.1% 33.4%

performance. Remarkably, within the same group, we observe disparities as substantial as 43.9%.
Expanding our examination to encompass different models operating on identical datasets reveals
an average difference as substantial as 22.83%. This discovery underscores the sensitivity of bLLMs
to the choice of prompts in zero-shot learning.
Based on the results of the Wilcoxon signed-rank test with Bonferroni correction for multiple

comparisons, we can draw the following conclusions regarding the significance of differences
between the distinct prompt templates:

• The comparison between prompt 0 and prompt 1 yielded a p-value of 0.0520, which is greater
than the corrected alpha threshold of 0.0167. Therefore, we fail to reject the null hypothesis,
indicating no significant difference between prompt 0 and prompt 1.

• The comparison between prompt 0 and prompt 2 resulted in a p-value of 0.0048, which is less
than the corrected alpha threshold of 0.0167. Consequently, we reject the null hypothesis,
indicating a significant difference between prompt 0 and prompt 2.

• The comparison between prompt 1 and prompt 2 produced a p-value of 1.0, which is much
greater than the corrected alpha threshold of 0.0167. Thus, we fail to reject the null hypothesis,
indicating no significant difference between prompt 1 and prompt 2.

In summary, the analysis reveals a significant difference between prompt 0 and prompt 2, while no
significant differences were found between the other pairs of zero-shot prompt templates.
Although the overall difference between different prompt templates on the same model is not

significant, the best performance difference between different prompts on the same model can be
as large as 43.9%. Therefore, it is crucial to test multiple prompt templates and select the one that
yields the highest accuracy for a given task and dataset. Based on the experimental results, we
have the following implications: a) Researchers should test a range of prompts when evaluating
models for the SA4SE task, rather than relying on generic prompts. b) Practitioners implementing
SA tools for SE domain (e.g., analyzing code reviews or developer forums) should invest time in
prompt optimization for their specific use case. c) The variability in results suggests that ensemble
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Table 4. Few-shot Performance: Comparative Results of LLMs Across Five Datasets. Cells highlighted in red

indicate the highest scores achieved among the three prompts executed by each respective model.

Model Shot Gerrit GitHub GooglePlay Jira StackOverflow

Macro-F1

1 0.69 0.54 0.89 0.82 0.42
3 0.69 0.60 0.87 0.84 0.46Llama 2-Chat

5 0.68 0.61 1 0.89 0.47

1 0.74 0.68 0.74 0.77 0.56
3 0.73 0.72 0.82 0.86 0.65Vicuna

5 0.71 0.72 0.77 0.89 0.64

1 0.76 0.68 0.89 0.78 0.54
3 0.75 0.72 0.87 0.9 0.59WizardLM

5 0.75 0.71 0.82 0.91 0.54

Micro-F1

1 0.78 0.54 0.94 0.83 0.42
3 0.79 0.60 0.94 0.86 0.51Llama 2-Chat

5 0.77 0.60 1 0.89 0.59

1 0.82 0.69 0.8 0.78 0.78
3 0.81 0.72 0.89 0.87 0.83Vicuna

5 0.78 0.72 0.83 0.89 0.82

1 0.83 0.67 0.94 0.79 0.67
3 0.84 0.72 0.94 0.91 0.74WizardLM

5 0.83 0.70 0.91 0.92 0.74

1 0.62 0.63 0.72 0.85 0.63
3 0.52 0.62 0.77 0.80 0.58Llama 2-Chat

5 0.57 0.57 0.76 0.83 0.58

1 0.71 0.75 0.96 0.92 0.65
3 0.67 0.74 0.95 0.99 0.65Vicuna

5 0.73 0.75 0.96 0.98 0.65

1 0.74 0.72 0.92 0.92 0.56
3 0.63 0.72 0.93 0.99 0.58

AUC

WizardLM

5 0.59 0.71 0.87 0.98 0.53

methods, combining multiple prompts or models, might offer more robust performance in real-
world applications. Our findings also open up an avenue for future research: Developing systematic
methods for prompt optimization in SE domain, including but not limited to the SA4SE task.

Answer to RQ1: In the SA4SE context, it is evident that bLLMs exhibit sensitivity to prompts in
zero-shot learning scenarios. When employing various prompt templates, the average macro-F1
score difference spans from 3.8% to 22.83%, the average micro-F1 score difference ranges from
1.5% to 18.7%, and the average AUC value difference varies from 3.1% to 33.4%.

4.2 RQ2: Impact of different shots on the performance of bLLMs with few-shot learning
Table 4 showcases the outcomes of few-shot learning utilizing three distinct bLLMs across five
diverse datasets. It is important to reiterate that a result “group” signifies the results produced by
the same bLLM when applied to the same dataset with varying shot numbers.
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Fig. 4. Sensitivity of different prompt designs. The circles depicted in the figure represent outlier data points.

In summary, when considering macro-F1, the 5-shot configuration emerges as the leader in 7
instances, followed by the 3-shot setup in 5 cases, and the 1-shot configuration excels in 4 instances.
Regarding micro-F1, the 5-shot configuration is at the top 7 times, the 3-shot setup prevails 9 times,
and the 1-shot configuration leads twice. Generally, the trend for both macro-F1 and micro-F1
indicates that having more than one example is more beneficial than having only one.
Among the three models, Llama 2-Chat consistently benefits from having more examples,

except for the Gerrit dataset concerning macro-F1 and micro-F1. In the case of Vicuna and
WizardLM, the impact of additional examples is noticeable primarily on the Jira dataset, affecting
both macro-F1 and micro-F1. This underscores the fact that the influence of additional examples
can vary depending on the bLLM and dataset employed. This can be explained by recognizing that
SA, especially the sentiment classification task central to our work, is relatively straightforward.
Consequently, the effects of increasing training examples might not be as pronounced. All bLLMs
show improved performance with more shots on the Jira dataset, likely due to its binary classifi-
cation nature. Despite being prompted to output only [“negative”, “positive”] labels, bLLMs tend to
predict neutral sentiments. This tendency decreases as the number of shots in the prompt increases.
With only two labels in the Jira dataset, fewer “neutral” predictions lead to higher macro- and
micro-F1 scores. This suggests that additional shots significantly reduce bLLMs’ misclassification
tendencies, especially in datasets with limited label options like Jira.
We take Vicuna’s performance as an example to illustrate this trend. In zero-shot settings, it

explicitly predicts “neutral” 19 times on the Jira dataset with the Prompt 1. This issue diminishes
in few-shot settings: Vicuna predicts “neutral” 11, 8, and 5 times with 1-shot, 3-shot, and 5-shot
prompt templates, respectively.
Moving on from the advantages of more shots, we also observed a decline in macro-F1 scores

with an increase in the number of examples. This trend is particularly noticeable when applying all
three bLLMs to the Gerrit dataset and when usingWizardLM on the GooglePlay dataset. One
plausible explanation for this phenomenon is that an increased number of examples leads to longer
prompts, which could potentially confuse the bLLMs. As indicated by Table 1, the documents from
the Gerrit dataset have the highest average number of tokens. Consequently, introducing more
examples results in even lengthier prompts. This observation aligns with prior research on bLLMs
in the broader SA domain [72].

Figure 4 provides a clearer illustration of this phenomenon. The box plot delves into the variance
of macro-F1 scores achieved by different prompts for each model on each dataset. We have examined
our study’s six prompt templates. This figure reveals that the influence of different prompts on

J. ACM, Vol. 37, No. 4, Article 1. Publication date: September 2024.



Revisiting Sentiment Analysis for Software Engineering in the Era of Large Language Models 1:17

Fig. 5. Comparison of the highest macro-F1 and micro-F1 scores achieved through zero-shot learning and

few-shot learning.

performance varies depending on both themodel and the dataset. In general, themodels demonstrate
differing levels of sensitivity to prompts. Notably, on the Jira dataset, all models exhibit high
sensitivity to prompts, signifying that the choice of prompt has a substantial impact on results. In
contrast, on the Gerrit and GitHub datasets, models appear less responsive to different prompts,
suggesting that the choice of prompt has a relatively smaller effect on their performance.
We also compare the best results of any of the three bLLMs under few-shot learning and those

achieved under zero-shot learning. Figure 5 illustrates that, in all the five datasets, the highest
macro-F1 score achieved through few-shot learning either surpasses or equals the highest macro-F1
score attained via zero-shot learning. We can observe a similar trend in terms of the micro-F1 scores.
This trend is particularly pronounced on the Jira dataset, where bLLMs perform notably better
under the few-shot learning paradigm. Furthermore, to assess whether the results of few-shot
learning are significantly better than zero-shot learning, we conducted a Wilcoxon signed-rank
test on one pairwise comparison: the zero-shot results from Prompt 0 versus the five-shot results.
Notably, this comparison yielded a p-value of 0.674. This leads us to retain the null hypothesis
(H0.2), indicating that the observed differences in results did not reach statistical significance.
Hence, it is important to recognize that while few-shot learning does demonstrate superior results,
the margin of improvement is not substantial.

Answer to RQ2: Although the top-performing bLLM achieved equal or higher macro- and
micro-F1 scores in all five datasets with few-shot learning, the performance gap between few-
shot and zero-shot learning was insignificant. In addition, there is no guarantee that the same
bLLM will exhibit improved performance through few-shot learning over zero-shot learning.

4.3 RQ3: Comparison between fine-tuned sLLMs and bLLMs
Table 5 presents a comparative analysis of the top-performing results obtained through two distinct
approaches: prompting bLLMs and fine-tuning sLLMs.
On the GooglePlay dataset, where the fine-tuning data is limited to fewer than 300 data points and
with a negative:neutral:positive ratio of 26:5:37, bLLMs demonstrate a remarkable performance
advantage. The most effective bLLM, Llama 2-Chat, significantly enhances the performance of the
leading sLLM, DistilBERT, by a substantial improvement of 75.4%. It indicates that when labeled
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Table 5. Results of LLMs compared with fine-tuned sLLMs. Cells highlighted in red indicate the highest

scores achieved among the three prompts executed by each respective model.

Model Gerrit GitHub GooglePlay Jira StackOverflow

Llama 2-Chat 0.75 0.68 1 0.89 0.51
Vicuna 0.74 0.72 0.98 0.89 0.65bLLM

WizardLM 0.76 0.72 0.89 0.91 0.59

ALBERT 0.73 0.90 0.56 0.97 0.64
BERT 0.76 0.92 0.49 0.95 0.50

DistilBERT 0.81 0.92 0.57 0.95 0.60
RoBERTa 0.74 0.94 0.42 0.95 0.68

Macro-F1

sLLM

XLNet 0.77 0.91 0.39 0.94 0.67

Llama 2-Chat 0.83 0.68 1 0.89 0.72
Vicuna 0.82 0.72 0.97 0.89 0.83bLLM

WizardLM 0.84 0.72 0.94 0.92 0.74

ALBERT 0.81 0.90 0.80 0.97 0.84
BERT 0.80 0.92 0.71 0.96 0.84

DistilBERT 0.86 0.92 0.83 0.96 0.84
RoBERTa 0.81 0.94 0.63 0.95 0.86

Micro-F1

sLLM

XLNet 0.83 0.91 0.57 0.95 0.89

Llama 2-Chat 0.65 0.64 0.88 0.85 0.65
Vicuna 0.73 0.83 0.997 0.996 0.71bLLM

WizardLM 0.74 0.81 0.95 0.99 0.71

ALBERT 0.83 0.98 0.67 0.998 0.87
BERT 0.89 0.98 0.80 0.998 0.81

DistilBERT 0.89 0.99 0.89 0.996 0.82
RoBERTa 0.87 0.99 0.69 0.99 0.87

AUC

sLLM

XLNet 0.89 0.98 0.73 0.99 0.86

data is scarce and the training dataset is highly imbalanced, fine-tuning bLLMs should be the
preferred approach over sLLMs.
On the contrary, we have observed that fine-tuning sLLMs produces superior results on the GitHub
and Jira datasets. The GitHub dataset benefits from a larger training dataset and a more evenly
distributed class structure, making it particularly well-suited for fine-tuning sLLMs. RoBERTa out-
performs the best-performing bLLMsVicuna andWizardLM by 30.6%. In contrast, the Jira dataset,
though smaller than GitHub, offers a more favorable class distribution than GooglePlay, with a
negative-to-positive ratio of approximately 1:2. The best-performing sLLM, ALBERT, outperforms
the best-performing bLLM, WizardLM by 6.6%.
For the Gerrit and StackOverflow dataset, both bLLMs and sLLMs exhibit relatively modest
performance. The best-performing bLLM achieves a macro-F1 score of 0.65, while the top sLLM
achieves a macro-F1 score of 0.68 on the StackOverflow dataset. The corresponding score is 0.76
and 0.81 on the Gerrit dataset. Both datasets share the challenge of imbalanced label distribution,
which explains the limited success of sLLMs. Furthermore, for the StackOverflow dataset, given
the short length of the sentences in this dataset, neither bLLMs nor sLLMs may have sufficient
contextual information to make accurate sentiment predictions.
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Fig. 6. Performance variance of all the models on each dataset.

Moreover, in Figure 6, we observe the performance of all the models across different datasets.
Notably, on the GooglePlay dataset, there is a significant variance, with bLLMs standing out by
achieving the highest macro-F1 and micro-F1 scores. This underscores bLLMs’ superiority over
sLLMs on this specific dataset.

On the other hand, for the Gerrit, Jira, and StackOverflow datasets, the variance is compar-
atively smaller, suggesting that while sLLMs outperform bLLMs, the margin of difference is not
substantial.

Conversely, in the case of the GitHub dataset, sLLMs demonstrate a substantial advantage over
bLLMs. This discrepancy is likely due to the abundance of training data available for the GitHub
dataset. It reinforces that sLLMs are most effective when ample, balanced training data is available.

To evaluate the significance of differences between bLLMs and sLLMs, we performed a Wilcoxon
signed-rank test on one pair of comparisons: the overall best bLLM, i.e., Llama 2-Chat, versus the
overall best sLLM, i.e., RoBERTa. The comparison resulted in a p-value of 0.277, leading us to retain
the null hypothesis (H0.3). This indicates that the observed differences in results did not achieve
statistical significance.

Answer to RQ3: In scenarios with limited labeled data and pronounced class imbalance,
prompting bLLMs is a more effective strategy, outperforming fine-tuning sLLMs, e.g., in the
GooglePlay dataset, Llama 2-Chat outperforms the DistilBERT by 75.4%. In contrast, when
ample training data is available and the dataset demonstrates a balanced distribution, the
preference should lean toward sLLMs as the more suitable approach, e.g., in the GitHub dataset,
RoBERTa outperforms Vicuna by 30.6%.

4.4 RQ4: Error Analysis
Quantitative Analysis. In Figure 7, it is evident that all three bLLMs consistently generate accurate
predictions in a substantial portion of instances. Specifically, in the realm of zero-shot learning,
these models collectively predicted the correct sentiments in 73.7% cases, and in the context of
few-shot learning, they made the correct prediction in 61.4% cases. Notably, both Vicuna and
WizardLM stand out as the bLLMs with the highest degree of overlapping predictions across
both scenarios. In the zero-shot context, they share common predictions in an impressive 83.3% of
their respective correct predictions, while in the few-shot scenario, this shared correct prediction
rate remains substantial at 70.1%. Conversely, the lowest degree of common correct predictions
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(a) Zero-shot learning with Prompt 0 (b) Few-shot learning with 5-shot prompt

Fig. 7. The Venn diagram of the correct predictions made by bLLMs.

Table 6. Overlap in Misclassification Across LLMs in Zero-Shot and Few-Shot Settings. The Common Column

Indicates Misclassifications Shared Between Both Settings.

Misclassified (% of the test set) Test set size
Zero-shot Few-shot Common

Gerrit 15 (13.2%) 10 (8.8%) 8 (7.0%) 114

GitHub 39 (15.6%) 41 (16.4%) 23 (9.2%) 250

GooglePlay 1 (2.9%) 0 0 35

Jira 8 (10.5%) 4 (5.3%) 4 (5.3%) 76

StackOverflow 19 (17.4%) 14 (12.8%) 11 (10.1%) 109

Total 82 (14%) 69 (11.8%) 46 (7.9%) 584

is observed between Vicuna and Llama 2-Chat, with rates of 80.3% and 69.1% for zero-shot
and few-shot scenarios, respectively. These results underscore the bLLMs’ capacity to achieve
comparable success rates in most cases while also emphasizing their unique strengths.
Now, we shift our focus to the errors made by these bLLMs. Table 6 demonstrates again that

overall, few-shot learning is more effective than zero-shot learning, as all the bLLMs misclassi-
fied more cases under zero-shot learning. However, we also notice that the number of common
misclassification by both settings is 46, which accounts for 7.9% of the total test cases. To better
understand the difficulties and challenges faced by bLLMs on the task of SA4SE, we manually
examined these cases. In our experiments, we analyze the cases where all the bLLMs did not get
any correct prediction no matter the setting.

Qualitative Analysis. Table 7 shows the error categories of these common misclassifications
by all the bLLMs. Polar facts emerge as the most prominent category, representing the majority
of failure cases. In some cases, the sentence describes a fact, which may usually invoke for most
people a positive or negative feeling, i.e. the annotator considered the described situation either as
desirable or undesirable. They have been annotated inconsistently across different datasets. For
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Table 7. Distribution of error categories and their percentage among the whole error cases.

Error Category # Cases (%)

Polar facts 16 (34.8%)
Subjectivity in annotation 13 (28.3%)
General error 8 (17.4%)
Politeness 5 (10.9%)
Implicit sentiment polarity 4 (8.7%)

example, in GitHub and StackOverflow datasets, they were labeled as neutral. However, in Gerrit
and Jira datasets, they were labeled as negative. For instance, in the Jira dataset, There is no need
to reference $wizard, it’s an object was labeled as negative. In the GitHub dataset, Ok, I’ll fix them.
was labeled as neutral.

The second most prevalent category, Subjectivity in annotation, comprises cases where the
evaluators’ interpretation of sentiment differed from the originally assigned label. As recognized in
prior works [33], sentiment or option itself is subjective. Similarly, sentiment annotation is also a
subjective activity. Depending on personality traits or personal disposition, different annotators’
perceptions of emotions might vary [52]. Thus, it is not rare that the evaluators have different
perceptions from the original annotators. One instance is from the StackOverflow dataset, Less
likely to be blocked by paranoid firewall configurations.. The evaluators consider this sentence
as positive, while the ground-truth label is negative. Depending on which perspective we think,
both make sense: we consider it positive, as we focus on “less likely to be blocked.” However, the
annotators may give more weight to “paranoid firewall configurations”.

General errors account for 17.4% of cases and occur when the model fails to identify clues in the
document that would be readily apparent to a human. For instance, emoticons can signal sentiment,
as observed in the sentence from the GitHub dataset, “yep, it’s work, but I need to add user and
password for proxy connection=(’.” This sentence may convey negative sentiment to a human,
particularly due to the emoticon “=(” embedded within it.
Politeness contributes to 10.9% of the error cases, arising when the presence of phrases like

“thanks” or “sorry” leads to inconsistencies across different datasets. For instance, in the GitHub
dataset, the sentence “sorry I did not realize you were already there...” was labeled as “negative”,
although some individuals may perceive it as “neutral”. Similarly, in the StackOverflow dataset,
“Good luck!” was labeled as “neutral”, but certain interpretations could classify it as “positive”.
These inconsistencies pose challenges for models when predicting labels with limited examples.

Lastly, Implicit sentiment polarity accounts for 8.7% error cases. When there is a lack of explicit
sentiment clues, it could be hard to decide which sentiment is contained. For instance, Yes, it did not
cause message loss just unnecessary retransmits., this sentence was annotated as negative. However,
there is no obvious sentiment clue.
In summary, due to the inconsistency in labeling rules and the subjective nature of the task,

challenges arise where bLLMs may struggle to improve significantly. However, in the case of general
errors, there is a potential for improvement as bLLMs continue to advance.

Answer to RQ4: In 7.9% of test cases, all the bLLMs consistently fail to make correct predictions,
regardless of the setting. The inconsistency in labeling rules and the inherently subjective nature
of SA4SE remain challenges for bLLMs.
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5 DISCUSSION

5.1 Additional Experiments
In addition to our primary experiments, we carried out one supplementary set of experiments to
further enrich and substantiate our study.

An Alternative Way to Leverage sLLMs. Building on existing research [71], we adapt sLLMs
for sentiment label prediction. An alternative approach involves leveraging sLLMs’ embeddings in
conjunction with various machine learning (ML) classifiers. Our study investigates the efficacy of
this methodology. Specifically, we evaluate five sLLMs, as discussed in Section 3.4, in conjunction
with three distinctML classifiers: Naïve Bayes [50], Decision Tree [48], and Random Forest [5]. These
ML models are implemented using the scikit-learn library [46], utilizing their default settings. We
take the first token ([CLS]) embedding for each document in our dataset as document representation.

The results presented in Table 8 offer a comprehensive comparison between the efficacy of
fine-tuning sLLMs and employing ML models with static sLLM embeddings. It is observed that,
in most cases, fine-tuning sLLMs leads to superior macro-F1 scores compared to traditional ML
classifiers with fixed embeddings. A notable exception to this trend is observed with the Naïve Bayes
classifier on the GooglePlay dataset. In our evaluation of ML classifiers, Random Forest stands out,
achieving the highest average macro-F1 score of 0.57, micro-F1 score of 0.77, and AUC value of
0.79 across various datasets and embedding models. In comparison, the approach of fine-tuning
sLLMs results in an average macro-F1 score of 0.75, which is a significant 32.3% improvement over
the Random Forest model. Additionally, fine-tuning sLLMs achieves an average micro-F1 score of
0.85, surpassing the Random Forest model by 10.5%. Fine-tuning sLLMs can achieve an average
AUC value of 0.89, which is 12.4% higher than the Random Forest model. This demonstrates the
considerable advantages of fine-tuning sLLMs in terms of all the macro-F1, micro-F1, and AUC
scores.

5.2 Implications for Future Research
Based on the experimental results in our study, we derive the empirical guidelines for future
research on SA4SE and SE in general as follows.

Select your approach: considering the size and class distribution of the dataset. When
determining the most suitable strategy for a specific task, it is important to consider the size and
class distribution of the dataset. Based on our empirical results, it is crucial to recognize that, in
cases with ample and balanced training data, fine-tuning sLLMs remains the preferred choice.
This guideline is applicable to numerous SE tasks. If there are already manually curated datasets
available or acquiring labeled data is not a significant challenge, fine-tuning sLLMs represents
a straightforward and effective option. However, in scenarios where labeled datasets are scarce,
bLLMs emerge as a potential solution.

Effective prompt engineering unlocks the full potential of bLLMs. Our experiments reveal
a crucial insight: while prompt templates may appear similar at first glance, determining which
one will yield the highest accuracy requires actual execution and template refinement. Carefully
crafting prompt templates proves advantageous, particularly in zero-shot scenarios, as it allows us
to better leverage the capabilities of bLLMs. For future research, we recommend testing multiple
prompt templates on a subset of samples and selecting the best-performing ones for deployment.
This meticulous process of prompt engineering and evaluation is essential for optimizing the

J. ACM, Vol. 37, No. 4, Article 1. Publication date: September 2024.



Revisiting Sentiment Analysis for Software Engineering in the Era of Large Language Models 1:23

Table 8. Comparative results of best fine-tuned sLLMs and traditional machine learning models using sLLMs

embeddings. Cells highlighted in red indicate the highest scores achieved among different models.

Gerrit GitHub Google Play Jira StackOverflow
ALBERT 0.53 0.64 0.42 0.84 0.43
BERT 0.52 0.65 0.58 0.88 0.53

DistilBERT 0.51 0.64 0.56 0.81 0.44
RoBERTa 0.46 0.6 0.29 0.62 0.41

Naive Bayes

XLNet 0.52 0.41 0.46 0.74 0.29
ALBERT 0.63 0.56 0.42 0.89 0.48
BERT 0.5 0.61 0.54 0.82 0.37

DistilBERT 0.52 0.56 0.48 0.88 0.33
RoBERTa 0.57 0.55 0.48 0.75 0.31

Decision Tree

XLNet 0.58 0.44 0.25 0.68 0.4
ALBERT 0.49 0.73 0.37 0.92 0.3
BERT 0.46 0.73 0.52 0.97 0.3

DistilBERT 0.53 0.76 0.51 0.92 0.39
RoBERTa 0.43 0.74 0.48 0.94 0.3

Random Forest

XLNet 0.46 0.54 0.3 0.78 0.3

Macro-F1

Fine-tuning Best 0.81 0.94 0.57 0.97 0.68
ALBERT 0.55 0.64 0.51 0.86 0.57
BERT 0.56 0.66 0.69 0.89 0.65

DistilBERT 0.54 0.65 0.66 0.83 0.54
RoBERTa 0.47 0.63 0.43 0.64 0.49

Naive Bayes

XLNet 0.54 0.48 0.51 0.78 0.49
ALBERT 0.72 0.57 0.57 0.91 0.71
BERT 0.65 0.62 0.6 0.84 0.68

DistilBERT 0.62 0.56 0.69 0.89 0.66
RoBERTa 0.68 0.56 0.66 0.79 0.64

Decision Tree

XLNet 0.68 0.46 0.34 0.71 0.7
ALBERT 0.75 0.74 0.57 0.93 0.8
BERT 0.75 0.74 0.74 0.97 0.8

DistilBERT 0.77 0.77 0.74 0.93 0.82
RoBERTa 0.75 0.76 0.71 0.95 0.8

Random Forest

XLNet 0.75 0.59 0.49 0.84 0.8

Micro-F1

Fine-tuning Best 0.86 0.94 0.83 0.97 0.89
ALBERT 0.62 0.79 0.69 0.91 0.64
BERT 0.57 0.83 0.73 0.93 0.81

DistilBERT 0.57 0.79 0.76 0.91 0.74
RoBERTa 0.59 0.79 0.6 0.75 0.69

Naive Bayes

XLNet 0.62 0.65 0.68 0.8 0.56
ALBERT 0.63 0.67 0.59 0.89 0.63
BERT 0.5 0.71 0.64 0.84 0.53

DistilBERT 0.52 0.68 0.64 0.88 0.5
RoBERTa 0.57 0.67 0.65 0.75 0.48

Decision Tree

XLNet 0.58 0.58 0.43 0.69 0.56
ALBERT 0.73 0.89 0.76 0.99 0.72
BERT 0.68 0.91 0.77 0.996 0.69

DistilBERT 0.65 0.9 0.84 0.99 0.68
RoBERTa 0.64 0.9 0.79 0.98 0.72

Random Forest

XLNet 0.67 0.76 0.67 0.85 0.63

AUC

Fine-tuning Best 0.89 0.99 0.89 0.998 0.87
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performance of bLLMs. Furthermore, our findings suggest that in few-shot learning scenarios,
adding more examples (shots) is not always beneficial. Depending on the task characteristics, a
longer context can potentially confuse bLLMs and lead to suboptimal results. Therefore, researchers
should carefully evaluate the impact of increasing the number of shots, as it may not consistently
improve performance.

Comparison of prompt engineering for LLMs in the SA4SE task and other SE tasks. The
SA4SE task is relatively straightforward, with the primary goal of determining the sentiment
of a given text from SE artifacts. This simplicity allows for the creation of concise and effective
prompt templates. Thus, this study focuses on investigating whether minor prompt changes would
lead to significant performance differences in the models. However, some other SE tasks, such as
code summarization [2], bug replay [20], and vulnerability detection [75], often contain additional
contextual information that can be included in the prompt. For instance, the prompt used for code
summarization [2] includes repository information, variable names, and scopes. Such information
is unavailable in the SA4SE task, where the prompt is limited to the text to be analyzed. These
task-specific details can guide the model in generating the desired output. In these SE tasks, prompt
engineering may focus on which pieces of information to include in the prompt to guide the model’s
output generation. In contrast, for SA4SE, prompt engineering may focus more on word choice
and whether to include additional examples in the prompt. Given the diversity of SE tasks, future
research should explore developing task-specific prompt templates to maximize the performance of
LLMs. This tailored approach can enhance the adaptability of LLMs to various SE tasks, ensuring
optimal performance across different domains.

Additional guidelines for rule setting in human-labeled SA datasets or prompt design. As
elaborated in Section 4.4, the inconsistency in labeling practices across various datasets poses a
significant challenge for bLLMs to predict labels accurately. To enhance performance, we propose
two potential approaches: 1. Encouraging human annotators to adhere to general labeling rules
when annotating data. 2. Empowering bLLMs to incorporate dataset-specific labeling rules. Recall
that despite restricting the label options to “positive” and “negative”, bLLMs still occasionally return
“neutral” labels when assessing the Jira dataset. This observation underscores the importance of
further exploring and refining prompts to match the dataset characteristics.

5.3 Threats to Validity
Threats to Internal Validity. One potential source of bias in our empirical study may arise from
the choice of prompt templates. To address this concern, we conducted experiments in the zero-shot
setting using three different prompt templates. It is important to note that we based our prompt
templates on prior work [72]. Additionally, we examined the influence of the number of shots in
the few-shot setting. Furthermore, there is a potential concern regarding the quality of the labeled
dataset. We did not generate new datasets but rather relied on pre-existing ones from other sources.
Consequently, we inherit this quality concern from the original works. However, as described
in Section 3.3, in the original labeling process, each dataset was labeled by two or more labelers
labeled individually and resolved the conflict by involving another labeler. Thus, we consider the
threat to be minimal.

Threats to External Validity. Our findings may not necessarily generalize to data from other
platforms. Nevertheless, we have taken steps to mitigate this threat by considering data from
five distinct platforms. It is important to recognize that our results are specific to the dataset and
experimental setup we employed. In the few-shot learning setting, our results are contingent on
randomly sampled examples. Nevertheless, our experiments and results still offer valuable insights,
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demonstrating that bLLMs can be a promising approach when dealing with a scarcity of annotated
data. In the future, we plan to expand our analysis by incorporating additional datasets from various
platforms and exploring more diverse prompt templates to enhance our understanding of leveraging
bLLMs for SE in SE further.
Another potential threat is our reliance on a single held-out test set for evaluation. While this

approach is common in the SA4SE literature [7, 41, 43, 71], it may not fully capture the diversity
of scenarios and data distributions that the models are intended to handle. Many other SE tasks
utilizing bLLMs also adopt the held-out test set approach, such as code comment generation [21],
log parsing [37], and automatic logging [65]. Beyond the SE research areas, other domains, in-
cluding natural language processing and information retrieval, have also employed the held-out
setting for evaluation, e.g., stream recommendation [68], document-level sentiment analysis [55],
generative outfit recommendation [66]. Although cross-validation may provide a more compre-
hensive assessment of performance across different situations, we believe the held-out test set
approach is sufficient for our study, given its wide adoption in the literature. In the future, we plan
to incorporate cross-validation into our evaluation methodology to enhance the robustness and
reliability of our findings.
The additional potential threat to external validity is the chosen bLLMs can be surpassed by

newer models. Despite this, our research is still relevant as it offers crucial insights into the current
capabilities and constraints of the accessible open-source bLLMs. It establishes a benchmark for
evaluating the progression of bLLMs over time. By documenting the specific versions of the models
utilized, we guarantee the reproducibility of our findings. This commitment ensures that our work
serves as a foundational reference, facilitating subsequent research and exploration in the evolving
domain of bLLMs on the SA4SE task.

Threats to Construct Validity. The first consideration for the construct validity of our study is the
potential for data leakage, particularly given our use of sLLMs and bLLMs. Data leakage could occur
if the evaluation dataset was already present in the pre-training dataset of the models, potentially
inflating model performance. However, we assess this risk to be low in our study. The dataset we
employed is not readily accessible through standard web browsing and requires downloading from
a specific URL. This aspect reduces the likelihood that it was included in the LLM’s pre-training
data, mitigating the risk of data leakage affecting our results.

Another potential threat is the unreliable labeled data. As discussed in Section 4.4, a significant
challenge bLLMs encountered was the inconsistency in labeling rules and guidelines within the
ground truth dataset. This inconsistency poses a threat to the construct validity of our study, as
it can lead to confusion in model training, potentially resulting in suboptimal performance. To
address this issue and enhance the reliability of our findings, future research should focus on
establishing clear, consistent labeling rules prior to the creation of new datasets. Additionally, a
thorough manual review of existing labeled datasets is recommended to ensure uniformity and
accuracy, thereby mitigating the risks associated with inconsistent labeling practices.

In addition, our choice to label “neutral” as the opposite of the ground truth in the Jira dataset
introduces an additional risk. This approachwas adopted to establish a lower-bound for performance,
which might, however, compromise the effectiveness of bLLMs. Similarly, we also map non-explicit
responses from bLLMs as “neutral” poses a potential threat. This decision, aimed at ensuring
consistency in SA, is based on the rationale that “mixed” sentiments typically indicate a balanced
or uncertain position, closely aligning with a neutral stance.
Lastly, to obtain prediction probability scores from bLLMs, we directly prompt the models for

their probability scores for each label. In cases where the total sum of these scores does not equal 1,
we normalize them by dividing each score by the total sum. However, this approach does not extract
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the probability scores directly from the model’s internal computations, which may not be the most
optimal method for obtaining accurate probability scores. This could potentially introduce noise
into our results, as the probability scores may not align with the actual probabilities. For instance,
in the GooglePlay dataset, the Llama 2-Chat model made perfect predictions on the test set with
5-shot learning, but the AUC value was only 0.76. In one case, although the correct prediction label
was negative, the predicted probability for the negative label was only 0.2, while the probability for
the positive label was 0.8. While such cases are rare, we believe this threat is minimal. Moreover,
our main evaluation metric is macro-F1, which is calculated based on the precision and recall of
each class and does not consider the probability scores of the models. Thus, our study is not highly
affected by potential inaccuracies in the AUC metric. To mitigate this threat, we plan to explore
alternative methods for extracting probability scores from bLLMs in future research.

6 CONCLUSION AND FUTUREWORK
In conclusion, our study marks the initial step towards comprehending the potential of utilizing
prompting bLLMs in discerning sentiment within SE domain documents. Our experiments reveal
that in cases with limited annotated data, bLLMs outperform sLLMs, and zero-shot learning is a
viable approach. However, when substantial and well-balanced training data is available, fine-tuning
sLLMs is the preferable strategy over prompting bLLMs.

Looking ahead, our future work will explore the versatile applications of bLLMs to enhance their
efficacy in the SA4SE task. Meanwhile, we plan to apply the latest advancements in transformer
accelartion [17, 18] to speed up the training and inference of bLLMs. We also plan to leverage the
results of SA4SE for other downstream tasks, such as library or API recommendations [23, 70].

Replication Package. We release the data, code and results on: https://github.com/soarsmu/
LLM4SA4SE.
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