
Large Language Model for Vulnerability Detection:
Emerging Results and Future Directions

Xin Zhou, Ting Zhang, and David Lo
School of Computing and Information Systems, Singapore Management University, Singapore

{xinzhou.2020,tingzhang.2019}@phdcs.smu.edu.sg,davidlo@smu.edu.sg

ABSTRACT
Previous learning-based vulnerability detection methods relied on
either medium-sized pre-trained models or smaller neural networks
from scratch. Recent advancements in Large Pre-Trained Language
Models (LLMs) have showcased remarkable few-shot learning ca-
pabilities in various tasks. However, the effectiveness of LLMs in
detecting software vulnerabilities is largely unexplored. This paper
aims to bridge this gap by exploring how LLMs perform with vari-
ous prompts, particularly focusing on two state-of-the-art LLMs:
GPT-3.5 and GPT-4. Our experimental results showed that GPT-3.5
achieves competitive performance with the prior state-of-the-art
vulnerability detection approach and GPT-4 consistently outper-
formed the state-of-the-art.

1 INTRODUCTION
Software vulnerabilities are the prevalent issues in software sys-
tems, posing various risks such as the compromise of sensitive
information [1] and system failures [2]. To address this challenge, re-
searchers have proposed machine learning (ML) and deep learning
(DL) approaches for identifying vulnerabilities in source code [3–6].
While previous ML/DL-based vulnerability detection approaches
have demonstrated promising results, they have primarily relied
on either medium-size pre-trained models such as CodeBERT [4, 7]
or training smaller neural networks (such as Graph Neural Net-
works [5]) from scratch.

Recent developments in Large Pre-Trained Language Models
(LLMs) have demonstrated impressive few-shot learning capabili-
ties across diverse tasks [8–12]. However, the performance of LLMs
on security-oriented tasks, particularly vulnerability detection, re-
mains largely unexplored. Moreover, LLMs are gradually starting to
be used in software engineering (SE), as seen in automated program
repair [8]. However, these studies predominantly focus on using
LLMs for generation-based tasks. It remains unclear whether LLMs
can be effectively utilized in classification tasks and outperform the
medium-size pre-trained models such as CodeBERT, specifically in
the vulnerability detection task.

To fill in the research gaps, this paper investigates the effective-
ness of LLMs in identifying vulnerable codes, i.e., a critical classifi-
cation task within the domain of security. Furthermore, the efficacy
of LLMs heavily relies on the quality of prompts (task descriptions
and other relevant information) provided to the model. Thus, we

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0500-7/24/04.
https://doi.org/10.1145/3639476.3639762

explore and design diverse prompts to effectively apply LLMs for
vulnerability detection.We specifically studied two prominent state-
of-the-art Large Language Models (LLMs): GPT-3.5 and GPT-4,
both serving as the foundational models for ChatGPT. Our exper-
imental results revealed that with appropriate prompts, GPT-3.5
achieves competitive performance with CodeBERT, and GPT-4 out-
performed CodeBERT by 34.8% in terms of Accuracy. In summary,
our contributions are as follows:
• We conduct experiments with diverse prompts for LLMs, en-
compassing task and role descriptions, project information, and
examples from Common Weakness Enumeration (CWE) and the
training set. We recognize LLMs as promising models for vulner-
ability detection.

• We pinpoint several promising future directions for leveraging
LLMs in vulnerability detection, and we encourage the commu-
nity to delve into these possibilities.

2 PROPOSED APPROACH
ChatGPT and In-Context Learning.ChatGPT (Plus) is built upon
closed-source large-size LLMs known as the GPT-3.5 and GPT-4.
Much prior research employs medium-size pre-trained models like
CodeBERT and CodeT5. These models are commonly fine-tuned,
updating all parameters to align with labeled training data. [13, 14].
Though very effective, fine-tuning demands large GPU resources
to load and update all parameters of pre-trained models [11, 15]. As
large-size LLMs (e.g., ChatGPT) have a large number of parameters,
it is very challenging to fine-tune them using GPU cards widely
used in academia. An alternative and widely adopted approach
for large-size LLMs, as introduced in GPT-3, is in-context learning
(ICL) [12, 16]. ICL involves freezing the parameters of LLMs and
utilizing suitable prompts to impart task-specific knowledge to
the models. Unlike fine-tuning, ICL requires no parameter update
which significantly reduces the large GPU resource requirement. To
perform the inference/testing, ICL makes predictions based on the
probability of generating the next token 𝑡 given the unlabeled data
instance 𝑥 and the prompt 𝑃 . Then the output token 𝑡 is mapped
into the prediction categories by the verbalizer (introduced below).
Prompt Basics. A prompt is a textual string that has two slots: (1)
an input slot [𝑋] for the original input data 𝑥 and (2) an answer
slot [𝑍] for the predicted answer 𝑧. The verbalizer, denoted as 𝑉 ,
is a function that maps the predicted answer 𝑧 to a class 𝑦 in the
target class set 𝑌 , formally 𝑉 : 𝑍 → 𝑌 . For instance, a straightfor-
ward prompt and verbalizer are shown as follows: 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (𝑥) =

“𝐶𝑜𝑑𝑒 𝑖𝑠 [𝑋] . 𝐼𝑡 𝑖𝑠 [𝑍] . ” and𝑉 =

{
+, 𝑖 𝑓 𝑍 = 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒,

−, 𝑖 𝑓 𝑍 = non-vulnerable,
where 𝑉 is the defined verbalizer where the token “vulnerable” is
mapped into the positive class. ChatGPT may generate responses
that differ from our predefined label words. To simplify the process,

https://doi.org/10.1145/3639476.3639762

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Xin Zhou, Ting Zhang, and David Lo

Table 1: Our prompt designs.
No. Prompt Type Prompt Template verbalizer

P Task Description

Now you need to identify whether a
method contains a vulnerability or not.
If has any potential vulnerability,
output: ’this code is vulnerable’.
Otherwise, output:
’this code is non-vulnerable’.
The code is [X]. Let’s start: [Z]

+: this code is vulnerable
-: this code is non-vulnerable

A1 Role Description You are an experienced developer who
knows the security vulnerability very well

+: this code is vulnerable
-: this code is non-vulnerable

A2 Project Information The code is from [the name of project].
The filename is [the name of file].

+: this code is vulnerable
-: this code is non-vulnerable

A3 Dangerous CWE
Types Examples

Here are examples of the most dangerous
CWE types.
Example1: int returnChunkSize ...
Lable1: this code is vulnerable.
Example2: static ...
...

+: this code is vulnerable
-: this code is non-vulnerable

A4 Randomly Sampled
Code

Here are sampled examples from the
training data.
Example1: int ...
Lable1: this code is vulnerable.
Example2: static ...
Lable2: this code is non-vulnerable.
...

+: this code is vulnerable
-: this code is non-vulnerable

A5 Retrieved Similar
Code

Here are the most similar codes from
the training data.
Example1: int ...
Lable1: this code is non-vulnerable.
Example2: static ...
Lable2: this code is vulnerable.
...

+: this code is vulnerable
-: this code is non-vulnerable

we manually check the predicted classes of ChatGPT’s generated
answers when they diverge from our specified label words. For
example, we map the answer "it is vulnerable because ..." into the
"vulnerable" class.
Prompt Designs. Table 1 shows our designed prompts (the base
prompt + several augmentations). OpenAI allows users to guide
ChatGPT through two types of messages/prompts: 1) the system
message, influencing ChatGPT’s overall behaviors such as adjusting
the personality of ChatGPT, and 2) the user message, containing
requests for ChatGPT to address and respond to. We use an empty
system message and user messages that are listed as prompts in
Table 1. Initially, we designed a straightforward prompt (P): “Now
you need to identify whether a method contains a vulnerability or
not.” as the base prompt. This base prompt only briefly describes
the task we want LLMs to do. To provide LLMs with more valuable
task-specific information, we propose diverse augmentations (A*)
to the base prompt, including the following:
Role Description (A1): We explicitly defined the role of LLMs in this
task: “You are an experienced developer who knows the security vul-
nerability very well”. This strategy aims to remind LLMs to change
their working mode to a security-related one.
Project Information (A2): Recently, Li et al. [17] propose the state-
of-the-art LLM for code namely StarCoder. Li et al. found that
adding the filename in the prompts can substantially improve the
effectiveness of StarCoder. We followed them to provide LLMs with
the project names and filenames associated with the target code.
External Source Knowledge (A3): The CWE system offers a wealth
of information about software vulnerabilities such as code examples
of typical vulnerable code. Leveraging such resources could possibly
enhance the prompt generation process for vulnerability detection
tasks. In this study, we collected the vulnerable code examples that
represent the top 25 most dangerous Common Weakness Enumera-
tion (CWE) types identified in the year 2022 [18]. These examples
showcase the characteristics and patterns of vulnerabilities, equip-
ping LLMs with valuable insights. This allows us to extend the

model’s knowledge beyond the limitations of the training data by
leveraging external sources, specifically the CWE system.
Knowledge in the Training Set (A4): The training data encompasses
valuable task-specific knowledge pertinent to a given task. How-
ever, we can only accommodate a limited number of input-output
samples because ChatGPT has a maximum token limit of 4,096. In
this strategy, we randomly select K samples from the training data
to leverage the knowledge embedded within the training dataset.
Vulnerable/non-vulnerable samples are both used in this strategy.
Selective Knowledge in the Training Set (A5): In contrast to the afore-
mentioned strategy, we adopted a different approach by retrieving
the top K most similar methods from the training data, instead of
randomly sampling. These retrieved methods served as examples
to furnish LLMs with pertinent knowledge, aiding their decision-
making process when evaluating the test data. To perform the
retrieval process, we employed CodeBERT [7] to transform the
code snippets into semantic vectors. Subsequently, we quantified
the similarity between two code snippets by calculating the co-
sine similarity of their respective semantic vectors. For a given
test code, we retrieved the top K similar methods along with their
corresponding vulnerability labels from the training data.

3 PRELIMINARY EVALUATION
In this work, we aim to answer a single research question: How
effective is ChatGPT with different prompt designs in vul-
nerability detection compared to baselines?
Dataset andModel.Weuse the vulnerability-fixing commit dataset
recently collected by Pan et al. [19]. To get the vulnerable functions
from vulnerability-fixing commits, we followed Fan et al. [20] to
first collect software versions prior to a vulnerability-fixing commit,
and then labeled functions with lines changed in a patch as vulner-
able. All remaining functions in a file touched by a commit were
regarded as non-vulnerable. As the security patches dataset covers
a large number of software repositories implemented in diverse pro-
gramming languages, it is challenging to write all the corresponding
parsers (used to split functions from files) for all languages. Thus, in
this preliminary evaluation, we only focus on software repositories
implemented in C/C++. To build our test set, we first randomly sam-
pled 20 open-source software repositories implemented in C/C++
from the original test set split by Pan et al. [19] and used their
vulnerability fixes to get the vulnerable functions (positive samples)
for our test set. Due to the considerable cost [21] associated with
querying ChatGPT on a large test set, we limited our sampling to
20 repositories. Despite the restricted sample size, our preliminary
experiment was designed to showcase the potential of ChatGPT.
For our training/validation sets, we used all the vulnerability fixes
of the C/C++ repositories in the original training/validation sets
split by Pan et al. and extracted vulnerable functions (positive sam-
ples). To obtain negative samples, i.e., non-vulnerable functions, for
the test/training/validation sets, we employed a random sampling
technique. For each vulnerable function, we selected one function
at random from non-vulnerable functions that were extracted from
the same file as the vulnerable function. Different from the vul-
nerable function, those non-vulnerable functions had not been
modified by the vulnerability-fixing commit. Finally, our dataset
has 7,683/853/368 methods in the training/validation/test sets.

2

Large Language Model for Vulnerability Detection:
Emerging Results and Future Directions ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Results of ChatGPT with diverse prompts and the fine-tuned CodeBERT
Model Prompt Prompt/Model Description Param. Accuracy Precision Recall F1 score F0.5 score

ChatGPT
(GPT-3.5)

P provide the task description to LLM - 50.0 Nan 0.0 Nan Nan
P+A1 provide the role description to LLM - 50.0 Nan 0.0 Nan Nan
P+A2 provide the project name - 50.0 Nan 0.0 Nan Nan

P+A3 provide vulnerable code examples from
25 most dangerous CWE Types in 2022 - 59.1 72.2 29.5 41.9 56.0

P+A4 randomly sample K input-output pairs
K=1 51.8 75.2 6.0 10.7 20.5
K=3 58.8 65.8 41.2 50.2 58.4
K=5 61.4 80.0 30.3 43.9 60.1

P+A5 retrieve top K most similar code
K=1 55.4 67.2 21.2 32.3 46.9
K=3 56.7 60.1 39.9 48.0 54.6
K=5 59.8 63.2 47.2 54.0 59.2

P+A4+A5 combine P4 and P5 together (both top 3) K=3 62.7 76.3 36.8 49.7 62.8
CodeBERT - full-parameter fine-tuned - 60.3 62.3 53.3 57.3 60.1

Table 3: Results of GPT-4 and baselines on the first half of the test set
Model Prompt Prompt/Model Description Param. Accuracy Precision Recall F1 score F0.5 score
ChatGPT
(GPT-3.5) P+A4+A5 combine P4 and P5 together K=3 63.6 77.8 38.0 51.1 64.3

ChatGPT
(GPT-4)

P provide the task description to LLM - 60.3 67.3 40.2 50.3 59.3
P+A3 code examples from CWE Types - 75.5 73.7 79.3 76.4 74.8
P+A5 retrieve top K most similar code K=5 61.4 63.6 53.3 58.0 61.3

P+A4+A5 combine A4 and A5 together K=3 59.2 60.2 54.3 57.1 59.0
CodeBERT - fine-tuned, tested on a half test set - 56.0 57.3 46.7 51.5 54.8

For studied models, we primarily focused our investigation on
ChatGPT (GPT-3.5) with the model name gpt-3.5-turbo while
also doing limited experiments on ChatGPT (GPT-4). For the base-
line model, we opted for one of the state-of-the-art approaches
(i.e., CodeBERT) according to a recent comprehensive empirical
study [22].
Evaluation. To measure the model’s effectiveness, we adopted
widely used evaluation metrics, i.e., Accuracy, Precision, Recall, F1,
and F0.5. We incorporated the F0.5 metric, which assigns greater
importance to precision than to recall. This choice is motivated by
the developers’ aversion to false positives, as a low success rate
may diminish their patience and confidence in the system [23]. As
the ICL method exhibits some instability, in this preliminary work,
we repeated experiments twice and reported the average results.
Results. The performance of GPT-3.5 in vulnerability detection
was evaluated by integrating different prompts, and the results are
summarized in Table 2. Experimental results revealed that the base
prompt yielded unsatisfactory outcomes, with GPT-3.5 predicting
every target code as non-vulnerable, resulting in an accuracy of 50%
and a recall of 0%. The inclusion of role descriptions and project
information did not contribute to better performance. However, in-
corporating examples from external source knowledge, specifically
the 25 most dangerous CWE types, led to substantial performance
improvements (18.2% in Accuracy). Furthermore, the utilization
of random sampling codes from the training data and retrieving
similar codes also resulted in significantly better performance (up
to 22.8% and 19.6% in Accuracy) compared to the base prompt.
Among all the prompt combinations studied, the P+A5 combina-
tion achieved the highest F1 score (54.0%) and Recall (47.2%), and
the P+A4+A5 combination achieved the best F0.5 (62.8%) score and
Accuracy (62.7%). The P+A4+A5 combination outperforms the base
prompt P by 25.4% in Accuracy. When comparing GPT-3.5 to the
state-of-the-art approach, GPT-3.5 (P+A4+A5) outperformed Code-
BERT by 4.0%, 22.5%, and 4.5% in terms of Accuracy, Precision, and

F0.5, respectively. However, GPT-3.5 underperformed CodeBERT
by 44.8% and 15.3% in Recall and F1. These experimental results
highlight the distinct strengths of CodeBERT and GPT-3.5. GPT-
3.5 demonstrates significantly higher Precision scores, indicating
its proficiency in minimizing false positives. On the other hand,
CodeBERT showcases a much higher Recall score, signifying its
capability to identify a greater number of vulnerabilities. Over-
all, GPT-3.5 demonstrates competitive performance when
compared to the fine-tuned CodeBERT.

The performance of GPT-4 is presented in Table 3. Notably, GPT-
4 is accompanied by a considerably higher cost. Due to the high
costs, in this preliminary evaluation, we only evaluate GPT-4 in the
first half of the test set. To assess its performance, we employed four
different prompts: the base prompt (P), the external source knowl-
edge prompt P+A3, the prompt P+A5which obtained the second best
F1 for GPT-3.5, and the prompt P+A4+A5 which obtained the best
F1 for GPT-3.5. As illustrated in Table 3, GPT-4 with the prompt
P+A3 significantly outperformed the fine-tuned CodeBERT
by 34.8% in terms of accuracy.

4 THREATS TO VALIDITY
One concern arises due to the possibility of data leakage in Chat-
GPT. The dataset used in our evaluation may overlap with the
data used for training ChatGPT. However, because ChatGPT is a
closed-source model, we lack the means to validate whether such
an overlap exists. Another threat to validity is the equal data ratio
between vulnerable and non-vulnerable functions in the test set.
We create a balanced test set to alleviate costs linked to ChatGPT
usage, given that the expenses of these experiments rise in pro-
portion to the number of test samples, particularly with a large
number of non-vulnerable functions. However, the equal data ratio
does not realistically represent the actual problem of vulnerability
prediction where the vulnerable code is the minority in software
systems. Besides, this data ratio will lead to inflated metrics in this
study. We recognize this issue as a limitation of the preliminary

3

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Xin Zhou, Ting Zhang, and David Lo

study, and in our future work, we aim to develop a new test set that
accurately reflects the real-world data ratio between vulnerable
and non-vulnerable functions. Lastly, we followed Fan et al. [20] to
label functions with lines changed in a vulnerability-fixing commit
as vulnerable. This labeling heuristic may overestimate the actual
number of vulnerable functions due to the commit tangling, where
some changed functions in the vulnerability-fixing commit may not
be directly relevant to addressing the vulnerability. We recognize
the challenge of accurately identifying real vulnerability-related
functions in the vulnerability-fixing commit. In our future work,
we aim to employ existing techniques (e.g., [24]) to untangle the
vulnerability-fixing commits.

5 RELATEDWORK
We are unable to find vulnerability detection work using GPT-3.5
and GPT-4 in the academic literature. However, there are several
related studies in the gray (non-peer-reviewed) literature. For ex-
ample, BurpGPT [25] integrates ChatGPT with the Burp Suite [26]
to detect vulnerabilities in web applications. In contrast, the soft-
ware studied in our study is not confined to a specific domain. Also,
vuln_GPT, an LLM designed to discover and address software vul-
nerabilities, was introduced recently [27]. Different from [27], our
study focuses on improving prompts for vulnerability detection. A
parallel work [28] also explores the use of ChatGPT in vulnerability
detection. They mainly enhance prompts through structural and
sequential auxiliary information. Three distinctions of our work
from [28] are: 1) We also studied GPT-4 while they did not; 2) We
integrate knowledge from the CWE system and similar samples
from the training set to enhance prompts, a dimension not con-
sidered in [28]; 3) We identified promising future study directions
which are not thoroughly discussed in [28].

6 FUTUREWORK
There are plenty of exciting paths to explore in future research.
Here, we’re just highlighting a few of these potential directions:
Local and Specialized LLMs-based Vulnerability Detection.
This study focuses on ChatGPT. However, ChatGPT requires data
to be sent to third-party services. This may restrict the utilization of
ChatGPT-related vulnerability detection tools among specific orga-
nizations, such as major tech corporations or governments. These
organizations, e.g., [29–31], regard their source code as proprietary,
sensitive, or classified material, and as a result, they are unable to
transmit or share it with third-party services. Additionally, Chat-
GPT models are not specialized for vulnerability detection and thus
may not take full advantage of the rich open-source vulnerability
data.

To address the above-mentioned limitations, in the future, we
aim to propose a local and specialized LLM solution for vulner-
ability detection. The solution will build upon general-purpose
and open-source code LLMs, e.g., Llama [32], which will be tuned
for vulnerability detection with the relevant vulnerability corpus.
The tuned LLM can alleviate the concerns of organizations that
prioritize data security and privacy while also making use of the
abundant open-source vulnerability data.
Precision and Robustness Boost in Vulnerability Detection.
A vulnerability detection solution with a high precision is usually
preferred. Additionally, the solution needs to remain robust against

data perturbations or adversarial attacks. With higher precision,
developers will have greater confidence in the reliability of detec-
tions and consequently perform the requisite actions to address the
detected vulnerabilities. With higher robustness, a more secure and
stable vulnerability detection model can be produced, and be more
immune to adversarial attacks.

In the future, we plan to boost LLMs’ precision and robustness
in this task: 1) To improve precision, we plan to employ ensem-
ble learning, a promising technique to improve the precision (and
possibly recall) by identifying the common high-confidence predic-
tions among different models. 2) To improve robustness, we plan to
extend an existing work [33] that employs a single adversarial trans-
formation (renaming of variables) to enhance model robustness. We
will delve into various other types of adversarial transformations
and assess their effectiveness in enhancing the robustness of LLMs.
Enhancing Effectiveness in Long-Tailed Distribution. In this
study, we formulate the task as a binary classification (vulnerable or
non-vulnerable). Moving one step further, developers may require
the tool to indicate the specific vulnerability type (e.g., CWE types)
associated with the detected vulnerable code. This additional infor-
mation is crucial for a better understanding and resolution of the
vulnerability. However, a recent study [34] revealed that vulnerabil-
ity data exhibit a long-tailed distribution in terms of CWE types: a
small number of CWE types have a substantial number of samples,
while numerous CWE types have very few samples. The study also
pointed out that LLMs struggle to effectively handle vulnerabilities
in these less common types. This long-tailed distribution could pose
a challenge for LLMs-based vulnerability detection solutions.

In the future, we plan to 1) explore whether LLMs, specifically
ChatGPT, can effectively detect these infrequent vulnerabilities or
not and 2) propose a solution (e.g., generating more samples for the
less common types via data augmentation) to address the impact
of the long-tailed distribution of vulnerability data.
Trust and Synergy with Developers. AI-powered solutions for
vulnerability detection, including this work, have limited interac-
tion with developers. They may face challenges in establishing trust
and synergy with developers during practical use. To overcome this,
future works should investigate more effective strategies to foster
trust and collaboration between developers and AI-powered solu-
tions [35]. By nurturing trust and synergy, AI-powered solutions
may evolve into smart workmates to better assist developers.

7 CONCLUSION
In this study, we explored the efficacy and potential of LLMs (i.e.,
ChatGPT) in vulnerability detection. We proposed some insightful
prompt enhancements such as incorporating the external knowl-
edge and choosing valuable samples from the training set. We also
identified many promising directions for future study. We made
our replication package1 publicly available for future studies.

Acknowledgement. This research / project is supported by the
National Research Foundation, under its Investigatorship Grant
(NRF-NRFI08-2022-0002). Any opinions, findings and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Research Foundation,
Singapore.
1https://github.com/soarsmu/ChatGPT-VulDetection

4

https://github.com/soarsmu/ChatGPT-VulDetection

Large Language Model for Vulnerability Detection:
Emerging Results and Future Directions ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Microsoft Exchange Flaw: Attacks Surge After Code Published.

https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-
intrdownloader-gen-trojans-a-16236, 2022.

[2] Dean Turner, Marc Fossi, Eric Johnson, Trevor Mack, Joseph Blackbird, Stephen
Entwisle, Mo King Low, David McKinney, and Candid Wueest. Symantec global
internet security threat report–trends for july-december 07. Symantec Enterprise
Security, 13:1–36, 2008.

[3] Hazim Hanif and Sergio Maffeis. Vulberta: Simplified source code pre-training for
vulnerability detection. In 2022 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2022.

[4] Michael Fu and Chakkrit Tantithamthavorn. Linevul: a transformer-based line-
level vulnerability prediction. In Proceedings of the 19th International Conference
on Mining Software Repositories, pages 608–620, 2022.

[5] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran,
and Dinh Phung. Regvd: Revisiting graph neural networks for vulnerability de-
tection. In Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings, pages 178–182, 2022.

[6] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program seman-
tics via graph neural networks. Advances in neural information processing systems,
32, 2019.

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A
pre-trained model for programming and natural languages. In Trevor Cohn,
Yulan He, and Yang Liu, editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association for Computational Linguistics,
2020.

[8] Chunqiu Steven Xia and Lingming Zhang. Keep the conversation going: Fixing
162 out of 337 bugs for $0.42 each using chatgpt. In arXiv preprint arXiv:2304.00385,
2023.

[9] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. Cupid: Lever-
aging chatgpt for more accurate duplicate bug report detection. arXiv preprint
arXiv:2308.10022, 2023.

[10] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. Revisiting
sentiment analysis for software engineering in the era of large language models.
arXiv preprint arXiv:2310.11113, 2023.

[11] Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. Explor-
ing parameter-efficient fine-tuning techniques for code generation with large
language models. arXiv preprint arXiv:2308.10462, 2023.

[12] Xin Zhou, Bowen Xu, Kisub Kim, DongGyun Han, Thanh Le-Cong, Junda He,
Bach Le, and David Lo. Patchzero: Zero-shot automatic patch correctness assess-
ment. arXiv preprint arXiv:2303.00202, 2023.

[13] Ting Zhang, Bowen Xu, Ferdian Thung, Stefanus Agus Haryono, David Lo, and
Lingxiao Jiang. Sentiment analysis for software engineering: How far can pre-
trained transformer models go? In 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 70–80. IEEE, 2020.

[14] Xin Zhou, DongGyun Han, and David Lo. Assessing generalizability of codebert.
In 2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 425–436. IEEE, 2021.

[15] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models.
ArXiv, abs/2106.09685, 2022.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877–1901, 2020.

[17] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161, 2023.

[18] https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html, 2022.
[19] Shengyi Pan, Lingfeng Bao, Xin Xia, David Lo, and Shanping Li. Fine-grained

commit-level vulnerability type prediction by cwe tree structure. In 45th Interna-
tional Conference on Software Engineering, ICSE 2023, 2023.

[20] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnera-
bility dataset with code changes and cve summaries. In Proceedings of the 17th
International Conference on Mining Software Repositories, pages 508–512, 2020.

[21] https://openai.com/pricing, 2023.
[22] Benjamin Steenhoek, MdMahbubur Rahman, Richard Jiles, andWei Le. An empir-

ical study of deep learning models for vulnerability detection. 45th International
Conference on Software Engineering, ICSE, 2023.

[23] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Practitioners’ expec-
tations on automated fault localization. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, pages 165–176, 2016.

[24] Yi Li, Shaohua Wang, and Tien N Nguyen. Utango: untangling commits with
context-aware, graph-based, code change clustering learning model. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 221–232, 2022.

[25] Alexandre Teyar. Burpgpt - chatgpt powered automated vulnerability detection
tool. https://burpgpt.app/#faq, 2023.

[26] PortSwigger. Burp suite - application security testing software. https://
portswigger.net/burp.

[27] Vicarius. vuln_gpt debuts as ai-powered approach to find and remediate software
vulnerabilities. https://venturebeat.com/ai/got-vulns-vuln_gpt-debuts-as-ai-
powered-approach-to-find-and-remediate-software-vulnerabilities/, 2023.

[28] Chenyuan Zhang, Hao Liu, Jiutian Zeng, Kejing Yang, Yuhong Li, and Hui Li.
Prompt-enhanced software vulnerability detection using chatgpt. arXiv preprint
arXiv:2308.12697, 2023.

[29] Jon Harper. Pentagon testing generative AI in ‘global information dominance’
experiments. https://defensescoop.com/2023/07/14/pentagon-testing-generative-
ai-in-global-information-dominance-experiments/, 2023.

[30] Kyle Chua. Samsung Bans Use of Generative AI Tools on Company-Owned
Devices Over Security Concerns. https://www.tech360.tv/samsung-bans-use-
generative-ai-tools, 2023.

[31] Kyle Chua. Apple Bans Internal Use of ChatGPT GitHub Copilot Over Fear of
Leaks. https://www.tech360.tv/apple-bans-internal-use-chatgpt-github-copilot-
over-fears-of-leaks, 2023.

[32] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

[33] Zhou Yang, Jieke Shi, Junda He, and David Lo. Natural attack for pre-trained
models of code. In Proceedings of the 44th International Conference on Software
Engineering, 2022.

[34] Xin Zhou, Kisub Kim, Bowen Xu, Jiakun Liu, DongGyun Han, and David Lo. The
devil is in the tails: How long-tailed code distributions impact large language
models. arXiv preprint arXiv:2309.03567, 2023.

[35] David Lo. Trustworthy and synergistic artificial intelligence for software engi-
neering: Vision and roadmaps. CoRR, abs/2309.04142, 2023.

5

https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-intrdownloader-gen-trojans-a-16236
https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-intrdownloader-gen-trojans-a-16236
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://openai.com/pricing
https://burpgpt.app/#faq
https://portswigger.net/burp
https://portswigger.net/burp
https://venturebeat.com/ai/got-vulns-vuln_gpt-debuts-as-ai-powered-approach-to-find-and-remediate-software-vulnerabilities/
https://venturebeat.com/ai/got-vulns-vuln_gpt-debuts-as-ai-powered-approach-to-find-and-remediate-software-vulnerabilities/
https://defensescoop.com/2023/07/14/pentagon-testing-generative-ai-in-global-information-dominance-experiments/
https://defensescoop.com/2023/07/14/pentagon-testing-generative-ai-in-global-information-dominance-experiments/
https://www.tech360.tv/samsung-bans-use-generative-ai-tools
https://www.tech360.tv/samsung-bans-use-generative-ai-tools
https://www.tech360.tv/apple-bans-internal-use-chatgpt-github-copilot-over-fears-of-leaks
https://www.tech360.tv/apple-bans-internal-use-chatgpt-github-copilot-over-fears-of-leaks

	Abstract
	1 Introduction
	2 Proposed Approach
	3 Preliminary Evaluation
	4 Threats to validity
	5 Related Work
	6 Future Work
	7 Conclusion
	References

