
On Evaluating the Efficiency of Source Code Generated by LLMs
Changan Niu

State Key Laboratory for Novel
Software Technology
Nanjing University
Nanjing, China

niu.ca@outlook.com

Ting Zhang
School of Computing and Information

Systems
Singapore Management University

Singapore
tingzhang.2019@phdcs.smu.edu.sg

Chuanyi Li
State Key Laboratory for Novel

Software Technology
Nanjing University
Nanjing, China
lcy@nju.edu.cn

Bin Luo
State Key Laboratory for Novel

Software Technology
Nanjing University
Nanjing, China

luobin@nju.edu.cn

Vincent Ng
Human Language Technology

Research Institute
University of Texas at Dallas

Richardson, Texas, USA
vince@hlt.utdallas.edu

ABSTRACT
Recent years have seen the remarkable capabilities of large lan-
guage models (LLMs) for code generation. Different from existing
work that evaluate the correctness of the code generated by LLMs,
we propose to further evaluate its efficiency. More efficient code
can lead to higher performance and execution efficiency of pro-
grams and software completed by LLM-assisted programming. First,
we evaluate the efficiency of the code generated by LLMs on two
benchmarks, HumanEval and MBPP. Then, we choose a set of pro-
gramming problems from the online judge platform LeetCode to
conduct a more difficult evaluation. Finally, we explore several
prompts that would enable LLMs to generate more efficient code.

ACM Reference Format:
Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng. 2024.
On Evaluating the Efficiency of Source Code Generated by LLMs. In AI
Foundation Models and Software Engineering (FORGE ’24), April 14, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3650105.3652295

1 INTRODUCTION
With the advent of large language models (LLMs) and abundant
source code data, program synthesis has entered a new era, aiming
to automatically generate correct and compliant code from natural
language descriptions. Extensive work has demonstrated the ability
of LLMs to excel at generating well-compliant code [9, 15, 27].
OpenAI’s GPT-4 achieves 67.0% Pass@1 on HumanEval [22], a
key benchmark for measuring functional correctness by given the
natural language description [10]. Other open source LLMs like
Code Llama [23] andWizardCoder [18] also demonstrate impressive
results, with Code Llama reaching up to 53% and 55% onHumanEval

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FORGE ’24, April 14, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0609-7/24/04. . . $15.00
https://doi.org/10.1145/3650105.3652295

Prompt of HumanEval/94

def skjkasdkd(lst):

"""You are given a list of integers.

You need to find the largest prime value and return the sum of its

digits.

...

Solution by GPT-3.5-turbo-1106

...

for i in range(2, int(n**0.5) + 1):

if n % i == 0:

return False

...

Solution by Code Llama 34B

...

for j in range(2, i):

if (i % j == 0):

prime = False

...

Figure 1: Code snippets extracted from the LLM-generated
code for HumanEval.

and MBPP [6], and WizardCoder achieving 57.3% and 51.8% on the
same benchmarks with just 7B parameters.

Given LLM’s impressive performance in code generation, a num-
ber of LLM-based programming assistance tools have emerged, such
as GitHub Copilot [13], and JetBrains’ AI Assistant [16]. These tools
can offer intelligent code suggestions that automatically complete
the code based on the context and the programmer’s intent, thus
making coding faster and speeding up the development process.

However, the efficiency of the generated code is overlooked. In
Figure 1, GPT-3.5 and Code Llama’s solutions on the HumanEval/94
example both yield correct code. However, GPT-3.5’s solution ex-
hibits higher running efficiency due to its 𝑂 (

√
𝑛) complexity com-

pared to Code Llama’s 𝑂 (𝑛) complexity for determining prime
numbers. This highlights the potential differences in execution effi-
ciency among LLM-generated code. Recommending more efficient
code not only enhances program/software performance but also
increase the probability of code acceptance by developers, reduc-
ing the need for further optimization and boosting development
productivity. Therefore, investigating and discussing the efficiency
of LLM-generated code is essential, assuming the functional cor-
rectness of the code is ensured.

Consequently, in this paper, we propose to conduct an empirical
study on the efficiency of LLM-generated code by investigating the
following research questions (RQs):

https://doi.org/10.1145/3650105.3652295
https://doi.org/10.1145/3650105.3652295
https://doi.org/10.1145/3650105.3652295

FORGE ’24, April 14, 2024, Lisbon, Portugal Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng

RQ1: How efficient is the code generated by LLMs?
RQ2: How to prompt LLMs for more efficient code?

For RQ1, we measure and compare the execution time (we abbre-
viate this to “runtime” in this paper) of the code generated by LLMs
first on two entry-level programming benchmarks, HumanEval
and MBPP and then on a benchmark containing more complex
problems. For RQ2, we try various prompts to explore how to make
LLM generate code that executes more efficiently. Results show
that simple prompts enhance efficiency for basic problems, while
complex problems benefit from a chain-of-thought prompt.

This paper makes three contributions: (1) evaluate the efficiency
of the code generated by LLMs. The results may guide practitioners
in choosing the most suitable model based on their specific require-
ments, (2) propose a LeetCode-based benchmark which provides
a reference point for comparing the correctness and efficiency of
more complex code, (3) investigate to prompt LLM for generating
more efficient code, which could directly benefit developers and
organizations using these models in various applications. We also
make code, data and other artifacts available online [1].

2 APPROACH AND EXPERIMENTS
In this section, we describe howwe design and conduct experiments
to investigate and answer two RQs.

2.1 RQ1: Efficiency of LLM-generated Code
2.1.1 Datasets. We evaluate the efficiency of LLM-generated code
using two entry-level programming benchmarks, HumanEval and
MBPP, and a benchmark containing more complex problems.

HumanEval and MBPP. HumanEval is used to measure functional
correctness for synthesizing programs from docstrings. It consists of
164 original programming problems in Python, assessing language
comprehension, algorithms, and simple mathematics, with some
comparable to simple software interview questions. MBPP consists
of a set of crowd-sourced Python programming problems, designed
to be solvable by entry-level programmers, covering programming
fundamentals, standard library functionality, etc.

LeetCodeEval. LeetCode [3] is a popular online judge platform
that offers a wide range of problems. For each problem, LeetCode
has a huge number of test cases covering a whole range of input
sizes and scenarios. For accepted code, LeetCode will also give its
runtime and the percentage of total code that it beats. Therefore,
we propose to use LeetCode problems and the LeetCode platform
to evaluate the correctness and efficiency of LLM-generated code.

In order to avoid data leakage, we select only problems fromMay
2023 and later (this is the latest GPT-4 knowledge cut-off). Besides,
we filter out problems with images in the description and those
have more downvotes than upvotes. Then, we divide the problems
into three subsets according to difficulty levels officially given by
LeetCode: easy, medium and hard. For each problem, we collect its
URL, title, description, examples, constraints, code templates, etc.
Ultimately, we build LeetCodeEval, a dataset for evaluating code
correctness and efficiency based on the LeetCode platform, which
consists of 44, 85 and 33 easy, medium and hard problems.

The statistics of datasets are presented in Table 1.

2.1.2 Study Design. HumanEval and MBPP. First, we use the source
code provided by Liu et al. [17] to let the LLM generate responses

Table 1: Dataset statistics. The prompt length is the GPT-2
tokenizer length.

Item HumanEval MBPP LeetCodeEval
Easy Medium Hard

of Problems 164 399 48 85 33
Mean Prompt Length 170.33 52.07 540.27 623.04 720.00
Median Prompt Length 145.5 47 530 583 665
Mean # of Test Cases 9.57 3.10 1840.10 1286.2 1036.64
Median # of Test Cases 7 3 906 785 774

Please solve the following programming problem entitled “{title}”
in C++, the problem is described below:

{description}

{examples}

{constraints}

Please use the following code template:
```cpp
{code_template}
```

Figure 2: The prompt template for LeetCodeEval.

for each problem by inputting the unfinished code prompt. Since
only correct code can be used in our comparison, we make the LLM
generate 𝑘 responses for each problem to improve the possibility
of collecting correct code. Then, we execute each code on corre-
sponding test cases to determine if it is correct. If any one of the
𝑘 codes generated by a LLM passes all the test cases, we consider
the LLM to have passed the problem, and take the first passing
code for efficiency evaluation in the next step. Otherwise, the LLM
is considered to have failed on that problem. Next, we measure
the runtime of each selected correct code. However, executing the
code on real hardware directly will introduce a lot of noise due to
machine loads, configurations, etc. [19]. Therefore, we utilize the
gem5 CPU simulator [8], which is the mostly used golden standard
in both academia and industry and is able to ensure the evaluation
progress reliable and reproducible [4, 19]. To ensure the evaluation
statistically significant, we repeat the execution of each piece of
code for 10 times and take the average runtime as the final result.

LeetCodeEval. We focus on one of the performance-oriented
languages, i.e., C++. For each problem in LeetCodeEval, we first
prompt LLMs to generate 3 different C++ codes. Figure 2 present the
prompt template obtained by asking ChatGPT. For each generated
code, we submit it to the LeetCode platform and get its correctness
and runtime (if accepted). Acceptance of any of the 3 codes is
considered as LLM acceptance and the runtime of the first accepted
code is recorded, otherwise it is considered as failure. We repeat
the submission of each piece of code for 3 times and record the
average results.

2.1.3 Models. We select commercial and open source LLMs that
achieve the SOTA performance on HumanEval and MBPP:

GPT-3.5 and GPT-4. OpenAI’s GPT-3.5 and GPT-4 can be seen
as the most powerful LLM.We use two models by using the OpenAI
APIwithmodel ids gpt-3.5-turbo-1106 and gpt-4-1106-preview.

On Evaluating the Efficiency of Source Code Generated by LLMs FORGE ’24, April 14, 2024, Lisbon, Portugal

Phi-2. Phi-2 [21] is a 2.7B-parameter model that demonstrates
outstanding reasoning and language understanding capabilities,
showcasing SOTA performance among LLMs smaller than 13B.

Code Llama. Code Llama [23] is built on top of Llama 2 [25] and
is fine-tuned for generating and discussing code. The 7B version is
shown to outperform Llama 2 70B on both HumanEval and MBPP.

WizardCoder. WizardCoder [18] empowers code LLMs with
complex instruction fine-tuning and outperforms the largest closed
LLMs, Anthropic’s Claude [5] andGoogle’s Bard [14], onHumanEval.

DeepSeek Coder. DeepSeek Coder [7, 11] 33B version is able to
outperform GPT-3.5 on HumanEval and achieve comparable results
with GPT-3.5 on MBPP after instruct tuning. We choose the 33B
version of DeepSeek Coder before and after instruct tuning for the
experiment, denoted as the “base” and “instruct”, respectively.

For LeetCodeEval, since it requires a chat/instruction model,
we choose GPT-4, GPT-3.5 and DeepSeek Coder 33B Instruct,
which perform the best on LeetCode problems in our pre-experiments.

2.1.4 Metrics. We report average normalized runtime and Pass@10.
Pass@10 metric is the probability that at least one of the top 10-
generated code samples for a problem passes all test cases.

Since there is no runtime on failed problem, we compute run-
time metric only for problems where all LLMs pass. For each such
problem, we count the runtime of each code on all test cases. Let
𝑡 (𝑀𝑗)𝑖 = {𝑡 (𝑀𝑗)𝑖1, ..., 𝑡 (𝑀𝑗)𝑖𝑛} denotes the runtime of the code 𝑐 𝑗

generated by LLM 𝑀𝑗 on test cases 𝑡𝑐𝑖 = {𝑡𝑐𝑖1, ...𝑡𝑐
𝑖
𝑛}, where 𝑛 is

the number of test cases of problem 𝑝𝑖 . Then, following the practice
of online programming websites such as LeetCode [3] and Code-
forces [2], we take the longest of these runtimes, i.e.,𝑚𝑎𝑥 (𝑡𝑖), as
the final runtime of the LLM𝑀𝑗 on the problem 𝑝𝑖 .

Nevertheless, there are order of magnitude differences in the
runtime of LLM on different problems, we normalize all the run-
times of all LLMs on each problem. Concretely, for the problem
𝑝𝑖 , we let 𝑡 (𝑀)𝑖 = {𝑡 (𝑀1)𝑖 , ..., 𝑡 (𝑀𝑙)𝑖 } be the runtime of LLMs
𝑀 = {𝑚1, ...,𝑚𝑙 } on problem 𝑝𝑖 , where 𝑙 is the number of LLMs.
Then the normalized runtime of LLMs on problem 𝑝𝑖 is calcu-
lated as 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑡 (𝑀)𝑖) = { 𝑡 (𝑀1)𝑖

𝑠𝑢𝑚 (𝑡 (𝑀)𝑖) , ...,
𝑡 (𝑀𝑙)𝑖

𝑠𝑢𝑚 (𝑡 (𝑀)𝑖) }, where
𝑠𝑢𝑚(𝑡 (𝑀)𝑖) denotes the summarization of all elements in 𝑡 (𝑀)𝑖 .
Then, the average normalized runtime of the LLM 𝑀𝑗 is denoted

as
∑𝑜

𝑖=1 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑡 (𝑀𝑗)𝑖)
𝑜 , where 𝑜 is the number of problems that

all LLMs pass, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑡 (𝑀𝑗)𝑖) is the normalized runtime of the
LLM𝑀𝑗 on the problem 𝑝𝑖 .

Besides, we also adopt average percentage beats for LeetCodeE-
val, i.e., the average of the percentage of each accepted code that
beats the other users.

2.1.5 Results. Table 2 and Table 3 shows the results of LLM on
HumanEval and MBPP, and LeetCodeEval, respectively. Note that
the average normalized runtime is computed based only on the
programming problems that all LLMs pass, and there are 70 and 242
problems that all LLMs pass in HumanEval and MBPP, 24, 3 and 0
on easy, medium and hard subsets of LeetCodeEval, respectively.
So, we cannot compare models’ performances on the hard subset,
and for medium subset, we find that 12 medium problems passed by
both GPT-4 and DeepSeek Coder, so we only compare and report
the two models on medium set.

Table 2: Results on HumanEval and MBPP.

LLM Version HumanEval MBPP
Runtime Pass@10 Runtime Pass@10

GPT-4 N/A 8.61 98.2 9.14 94.2
GPT-3.5 N/A 8.35 87.2 8.86 88.7
Phi-2 2.7B 8.78 62.8 8.98 74.7

Code Llama
7B 9.95 68.9 9.58 81.0
13B 9.87 79.3 9.61 83.0
34B 9.93 80.5 9.54 85.0

WizardCoder
7B 9.35 67.7 8.54 74.4
13B 9.18 75.0 8.83 81.5
34B 9.04 83.5 8.60 85.5

DeepSeek Coder 33B Base 9.40 79.9 9.42 82.0
33B Instruct 7.54 93.9 8.93 90.0

Table 3: Results of LLMs on easy and medium subsets. GPT-
3.5 is excluded on the Medium subset.

LLM Easy Medium
Runtime %Beats Runtime %Beats

GPT-4 30.89 65.51 50.92 73.09
GPT-3.5 33.80 62.08 - -
DeepSeek Coder 35.30 61.05 49.08 67.46

First, the ability to generate correct code is not positively
correlated with the ability to generate efficient code. For exam-
ple, the Pass@10 of GPT-4 has a clear advantage over GPT-3.5, but
the code generated by the former is not as efficient as the latter on
both HumanEval and MBPP. The same happens with Phi-2, which,
despite having the lowest Pass@10, generates code with a lower
runtime than most of the other models. Second, larger number of
parameters does not promise higher performance.Code Llama
and WizardCoder series demonstrate that increasing the number of
parameters does not significantly affect the runtime of generated
code across models of different sizes. This suggests that models of
varying sizes share similar performance due to their reliance on the
same training data. Then, training strategy and data have an
impact on the efficiency of the generated code. For example,
DeepSeek Coder 33B Instruct has a significant advantage over its
Base version. Indeed the “Base” version is trained on code corpus
by completion and fill-in-the-blank tasks, while the “Instruct” ver-
sion is the result of further instruct-tuning of the “Base” version
on the instruction data. Last, LLM performs differently across
benchmarks. On HumanEval, DeepSeek Coder 33B Instruct has
the lowest runtime, but on MBPP, the lowest model becomes the
WizardCoder series. We argue that this is related to the data distri-
bution of the model and the dataset. In addition, on LeetCodeEval,
the code generated by GPT-4 has the highest efficiency on average.
We believe this is due to more diverse test cases compared to Hu-
manEval and MBPP. Comprehensive test cases on LeetCode can
make the runtime benefits of code with real less complexity more
significant, and thus more accurately reflect the efficiency.

2.2 RQ2: Prompting for More Efficient Code
We try three different prompts which are illustrated in Figure 3,
where the last two prompts are introduced by Madaan et al. [19].

FORGE ’24, April 14, 2024, Lisbon, Portugal Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng

Prompt 1

User: {original_prompt}
Please make the code as time efficient as possible.
LLM: {fast_code}

Prompt 2

User: {original_prompt}
LLM: {slow_code}
User: Optimize the code and provide a more efficient version.
LLM: {fast_code}

Prompt 3

User: {original_prompt}
LLM: {slow_code}
User: Give a potential strategy improving the efficiency of the
code.
LLM: strategy
User: Now give the optimized version of the same code with the
strategy mentioned above.
LLM: {fast_code}

Figure 3: Three prompt methods.

Table 4: Speedup of three prompt methods.

Method LLM HumanEval MBPP LeetCodeEval
Easy Medium

Prompt 1
GPT-4 1.06 1.04 1.13 1.07
GPT-3.5 1.04 1.03 1.11 -
DeepSeek Coder 1.00 1.01 1.03 1.02

Prompt 2
GPT-4 1.06 1.05 1.15 1.16
GPT-3.5 1.03 1.03 1.15 -
DeepSeek Coder 1.01 1.02 1.05 1.02

Prompt 3
GPT-4 1.05 1.04 1.18 1.18
GPT-3.5 1.04 1.03 1.16 -
DeepSeek Coder 1.01 1.00 1.05 1.01

Prompt 1 directly asks the LLM to generate the code as efficient as
possible. Both prompt 2 and prompt 3 are chain-of-thought prompts.
They first use the original prompt to make the model generate
the original code. Then prompt 2 asks model to optimize it, while
prompt 3 first has the model analyze optimization strategies before
generating the optimized code.

We apply the three prompts on GPT-4, GPT-3.5 and DeepSeek
Coder 33B Instruct. Note that here, same as in RQ2, both the Leet-
CodeEval hard subset and the GPT-3.5 on the LeetCodeEval medium
subset are excluded from evaluation. For metrics, we choose the
speedup rate, i.e., let 𝑡𝑜 and 𝑡𝑛 be the runtime of the original code
and optimized code, respectively, then 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =

𝑡𝑜
𝑡𝑛
. Following

Madaan et al. [19], for cases where the optimized code fails or the
runtime is higher, we make 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 1.

The overall results are shown in Table 4. First, the prompt
method generally works better on LeetCodeEval than on
HumanEval and MBPP. We believe there are two reasons: (1)
HumanEval and MBPP problems have lower average difficulty and
complexity than LeetCodeEval, resulting in a constrained optimiza-
tion space and similar performance across prompt methods, and
(2) the limited input size of the former prevents the reduction in
algorithmic complexity from being evident in the runtime, whereas

the more extensive test cases in LeetCodeEval magnify the perfor-
mance of code with lower complexity. Second, the three prompts
have a larger gap on the medium subset of LeetCodeEval
than easy subset. This is because the simplicity of the easy subset
allows the model to produce correct and efficient code simultane-
ously. However, the increased complexity in the medium subset,
due to higher problem difficulty, hinders Prompt 1 from generating
compliant code in a single step. Improved results are achieved by
having the model first generate correct code and then analyze and
optimize it step by step.

3 THREATS TO VALIDITY
Potential data leakage is a threat to construct validity because
we can not know if the data used for evaluation is present in the
training data of models. We mitigate this threat by selecting only
LeetCode problems after April 2023, which is the latest knowledge
cut-off of the GPT series, however, we are unable to get the data
cut-offs for the other model. Threats to internal validity is related
to the unstable runtime, we mitigate this by using the gem5 CPU
simulator and running each evaluation process multiple times.

4 RELATEDWORK
DeepDev-PERF [12], a deep learning-based approach to improve
software performance for C# applications, can generate the same
performance improvement suggestions as the developer patches
in 53% of the cases. Madaan et al. [19] adapt LLMs to code opti-
mization with respect to the runtime. They propose PIE, a dataset
consists of C++ program pairs with runtime annotations, and eval-
uate different prompting and fine-tuning approaches for adapting
LLMs to optimize programs. By allowing LLMs to iteratively pro-
vide self-feedback and refine their own outputs, Self-Refine [20]
increases the LLM’s performace on PIE dataset.

Rather than efficiency, Siddiq et al. [24] evaluate and improve
the quality of the automatically generated code by LLMs w.r.t. the
adherence to coding standards and presence of code smells and
security smells. Yetiştiren et al. [26] assesses the code generation
capabilities of several LLMs in terms of code quality metrics, such
as code validity and maintainability.

5 CONCLUSION AND FUTUREWORK
This paper evaluates the efficiency of LLM-generated code, reveal-
ing that (1) the efficiency of LLM-generated code is independent of
the model’s performance on generating correct code and model size,
and (2) step-by-step prompting could make LLM to generate more
efficient code, especially on complex problems. Our study suggests
a research avenue for improving LLMs in code efficiency, offering
practical insights for model selection. Future work will focus on
proposing a novel prompt method to enhance LLM-generated code
efficiency.

ACKNOWLEDGMENTS
This research is supported by the Cooperation Fund of Huawei-NJU
Creative Laboratory for the Next Programming, CCF-Huawei Pop-
ulus Grove Fund, NSF award 2034508. We also thank the reviewers
for their helpful comments. Chuanyi Li is the corresponding author.

On Evaluating the Efficiency of Source Code Generated by LLMs FORGE ’24, April 14, 2024, Lisbon, Portugal

REFERENCES
[1] [n. d.]. https://github.com/NougatCA/EfficiencyEval.
[2] [n. d.]. Codeforces. https://codeforces.com/.
[3] [n. d.]. LeetCode. https://leetcode.com/.
[4] Ayaz Akram and Lina Sawalha. 2019. Validation of the gem5 simulator for

x86 architectures. In 2019 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). IEEE, 53–58.

[5] Anthropic. [n. d.]. Introducing Claude. https://www.anthropic.com/index/
introducing-claude.

[6] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732 [cs.PL]

[7] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi
Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. 2024. DeepSeek
LLM: Scaling Open-Source Language Models with Longtermism. arXiv preprint
arXiv:2401.02954 (2024).

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[9] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang
Lou, and Weizhu Chen. 2023. CodeT: Code Generation with Generated Tests.
In The Eleventh International Conference on Learning Representations. https:
//openreview.net/forum?id=ktrw68Cmu9c

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs.LG]

[11] DeepSeek. 2023. DeepSeek Coder: Let the Code Write Itself. https://github.com/
deepseek-ai/DeepSeek-Coder.

[12] Spandan Garg, Roshanak Zilouchian Moghaddam, Colin B Clement, Neel Sun-
daresan, and ChenWu. 2022. DeepDev-PERF: a deep learning-based approach for
improving software performance. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 948–958.

[13] GitHub. [n. d.]. GitHub Copilot. https://github.com/features/copilot.
[14] Google. [n. d.]. Bard. https://bard.google.com/.
[15] Di Huang, Ziyuan Nan, Xing Hu, Pengwei Jin, Shaohui Peng, Yuanbo Wen, Rui

Zhang, Zidong Du, Qi Guo, Yewen Pu, and Yunji Chen. 2023. ANPL: Towards
Natural Programming with Interactive Decomposition. In Thirty-seventh Confer-
ence on Neural Information Processing Systems. https://openreview.net/forum?
id=RTRS3ZTsSj

[16] JetBrains. [n. d.]. JetBrains AI. https://www.jetbrains.com/ai/.
[17] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is

Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. In Thirty-seventh Conference on Neural
Information Processing Systems.

[18] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. Wiz-
ardCoder: Empowering Code Large Language Models with Evol-Instruct.
arXiv:2306.08568 [cs.CL]

[19] Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy
Ranganathan, Yiming Yang, Graham Neubig, and Amir Yazdanbakhsh. 2024.
Learning Performance-Improving Code Edits. In International Conference on
Learning Representations.

[20] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao,
Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with self-feedback. arXiv preprint
arXiv:2303.17651 (2023).

[21] Microsoft. 2023. Phi-2: The surprising power of small language mod-
els. https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-
power-of-small-language-models/.

[22] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[23] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-

qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
Llama: Open Foundation Models for Code. arXiv:2308.12950 [cs.CL]

[24] Mohammed Latif Siddiq, Beatrice Casey, and Joanna Santos. 2023. A Lightweight
Framework for High-Quality Code Generation. arXiv preprint arXiv:2307.08220
(2023).

[25] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[26] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evaluating
the code quality of ai-assisted code generation tools: An empirical study on github
copilot, amazon codewhisperer, and chatgpt. arXiv preprint arXiv:2304.10778

(2023).
[27] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber.

2023. Parsel: Algorithmic Reasoning with Language Models by Composing
Decompositions. In Thirty-seventh Conference on Neural Information Processing
Systems. https://openreview.net/forum?id=qd9qcbVAwQ

https://github.com/NougatCA/EfficiencyEval
https://codeforces.com/
https://leetcode.com/
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://arxiv.org/abs/2108.07732
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://arxiv.org/abs/2107.03374
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/features/copilot
https://bard.google.com/
https://openreview.net/forum?id=RTRS3ZTsSj
https://openreview.net/forum?id=RTRS3ZTsSj
https://www.jetbrains.com/ai/
https://arxiv.org/abs/2306.08568
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=qd9qcbVAwQ

	Abstract
	1 Introduction
	2 Approach and Experiments
	2.1 RQ1: Efficiency of LLM-generated Code
	2.2 RQ2: Prompting for More Efficient Code

	3 Threats to Validity
	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

