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Duplicate bug report detection (DBRD) is a long-standing challenge in both academia and industry. Over the
past decades, researchers have proposed various approaches to detect duplicate bug reports more accurately.
With the recent advancement of deep learning, researchers have also proposed several approaches that leverage
deep learning models to detect duplicate bug reports. It is well acknowledged that the performance of deep
learning-based approaches is highly dependent on the size of the training dataset. In the bug repositories
with a large number of bug reports, deep learning-based approaches have shown promising performance.
However, in the bug repositories with a typical number of issues, i.e., around 10k, the existing deep learning
approaches show worse performance than the traditional approaches. A recent benchmarking study on DBRD
also reveals that the performance of deep learning-based approaches is not always better than the traditional
approaches. However, traditional approaches have limitations, e.g., they are usually based on the bag-of-words
model, which cannot capture the semantics of bug reports. To address these aforementioned challenges, we
seek to leverage a state-of-the-art large language model to improve the performance of the traditional DBRD
approach.

In this paper, we propose an approach called Cupid, which combines the best-performing traditional
DBRD approach REP with the state-of-the-art large language model ChatGPT. Specifically, we first leverage
ChatGPT under the zero-shot setting to get essential information on bug reports. We then use the essential
information as the input of REP to detect duplicate bug reports. We conducted an evaluation by comparing
Cupid with three existing approaches on three datasets. The experimental results show that Cupid achieves
new state-of-the-art results, reaching Recall Rate@10 scores ranging from 0.59 to 0.67 across all the datasets
analyzed. In particular, Cupid improves over the prior state-of-the-art approach by 6.7% - 8.7% in terms of
Recall Rate@10 in the datasets. Cupid also surpassed the state-of-the-art deep learning-based DBRD approach
by up to 79.2%. Additionally, our study demonstrates the significant impact of prompt engineering on the
performance of Cupid. Our work highlights the potential of combining large language models to improve the
performance of software engineering tasks.
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1 INTRODUCTION

As software systems become larger and more complex, it is inevitable that they contain bugs. Bug
reports are the main channel for users to report bugs to developers. Most software projects use
issue tracking systems, such as Bugzilla [5], Jira [10] and GitHub [6], to manage bug reports and
track the progress of bug fixing. When a user finds a bug, they can submit a bug report to the
issue tracking system. Then, the developers will fix the bug according to the description in the
bug report. However, many bug reports are duplicates of the existing bug reports. For example, in
the dataset constructed by Lazar et al. [37], duplicate bug reports represent 12.67% - 23% out of
the total bug reports in a system. It is crucial to identify duplicate bug reports as soon as possible
to avoid wasting developers’ time and effort on fixing the same bug multiple times To improve
the efficiency of bug report management, it is desirable to have an automatic approach to identify
duplicate bug reports.
Over the past decades, various duplicate bug report detection (DBRD) approaches have been

proposed [25, 30, 53, 59, 69]. With the rapid development of deep learning, many deep learning-
based approaches have been proposed in recent years [30, 53, 69]. They have demonstrated superior
performance when the bug repositories are large enough to train the deep learning models. For
instance, SABD [53] achieved over 0.6 in terms of Recall Rate@20 in all the experimented datasets.
One of the common characteristics of these datasets is that they all contain more than 80𝑘 bug
reports and over 10𝑘 duplicate bug reports in the training data, which is large enough to train a
deep learning model. It is well acknowledged that deep learning models require a large amount
of data to achieve high precision [51]. However, bug repositories of many projects are not large
enough to train a deep learning model.
Based on the dataset provided by Joshi et al. [34], it was discovered that out of the 994 studied

GitHub projects that have more than 50 stars and forks, the average number of issues was 2,365.
Additionally, it is interesting to note that many active projects, including those with more than
100𝑘 stars, have fewer than 10𝑘 issues. For example, till 5th May 2023, both ohmyzsh/ohmyzsh [11]
and axios/axios [4] have around 4𝑘 issues each, while vuejs/vue [15] has around 10𝑘 issues.
Therefore, we argue that most projects do not have tens of thousands of issues. The repositories
with tens of thousands of issues are considered as atypical, while a typical repository contains
less than or around 10𝑘 issues. It is essential to highlight that young and fast-growing projects,
although currently having a small number of issues, require more attention in handling the DBRD
challenge. For instance, Significant-Gravitas/Auto-GPT [12], which was initially released on
March 30, 2023, now contains less than 2𝑘 issues while it gets 124𝑘 stars. A recent benchmarking
study on DBRD by Zhang et al. [72] also confirms that the performance of deep learning-based
approaches loses to information retrieval-based approaches when the bug repositories only contain
less or around 10𝑘 duplicate bug reports. How to improve the performance of DBRD in the typical
bug repositories remains an open problem.

Prior to the development of deep learning, many non-deep learning-based approaches have been
proposed [32, 54, 59, 60] (we refer to them as “traditional approaches” in this paper). Compared
to deep learning-based approaches, these approaches are more promising for detecting duplicate
bug reports in typical bug repositories. However, traditional approaches rely on either the vector
space model [54] or the bag-of-words model [32]. These models cannot capture the semantics
of bug reports. We seek to improve the performance of non-deep learning based approaches by
considering the semantics of bug reports.
Recently, large language models (LLMs), e.g., Vicuna [21], LLama 2 [65], and ChatGPT [8],

have achieved outstanding performance in a multitude of natural language processing (NLP)
tasks [19, 26, 50]. However, leveraging the potential of LLMs to improve DBRD’s performance is
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not trivial. The most straightforward way is to directly query LLMs on whether two bug reports
are duplicates. However, this is impractical due to the following reasons.

(1) Time-consuming and costly. To obtain the potential master bug reports to which a given bug
report may be duplicated, we must pair it with all the bug reports available in the repository.
When a new bug report is submitted, all previously submitted bug reports are considered duplicate
candidates. It is infeasible to query LLMs to compare the given bug report with all the bug reports
in the repository, as the LLMs’ response is not instantaneous. While speeding it up is possible (e.g.,
by running many queries at once), it quickly gets very costly for LLMs such as ChatGPT, which
operates on a pay-per-use basis for their API usage.

(2) Ignorance of other bug reports in the repository. If a method only compares two bug reports at a
time, it will not take into account the information present in the other bug reports stored in the
repository. Therefore, it would be hard to decide the relative order of all the duplicate candidates
in order to recommend the top-𝑘 duplicate candidates. Although one possibility is in addition to
querying ChatGPT on whether the bug report pair is duplicated or not, we ask ChatGPT to provide
a measure of how confident it is in its answer, expressed as a similarity score or confidence score.
However, without considering the information from other bug reports, the similarity score will be
less reliable.

(3) LLMs are generative AI techniques which are designed to generate contents. Although LLMs have
achieved impressive performance in a multitude of NLP tasks, many researchers argue that LLMs
are only good at language abilities but not at actual reasoning [17, 42]. Thus, to take full advantage
of LLMs, we carefully design the task to ensure its suitability for LLMs. As DBRD requires some
reasoning on how two bug reports are duplicated to each other, it is not suitable to query LLMs
directly.

We present Cupid, which stands for leveraging ChatGPT for more accurate duplicate bug report
detection. Cupid aims to tackle the challenges mentioned above when directly querying LLMs
for DBRD. We propose to leverage LLMs as an intermediate step to improve the performance of
the traditional DBRD approach. Based on the recent benchmarking study by Zhang et al. [72],
REP [59] demonstrates the best performance in the datasets with a typical number of issues, which
is also the focus of this work. Thus, we select REP as the backbone duplicate retrieval method.
Specifically, Cupid leverages state-of-the-art ChatGPT to identify keywords from bug reports and
then incorporate them with REP to achieve better performance. By doing so, Cupid avoids using
ChatGPT to compare the given bug report with all the bug reports in the repository. Furthermore,
by standing on the shoulder of the traditional DBRD approach, Cupid also takes the information of
the other bug reports in the repository into consideration. In particular, 𝐵𝑀25𝐹𝑒𝑥𝑡 used by REP
calculates inverse document frequency (IDF), which is a global term-weighting scheme across all
the bug reports. In addition, Cupid prompts ChatGPT to identify keywords from bug reports, which
requests ChatGPT to generate a list of relevant keywords based on the content of a bug report.
Compared to a decision-making task, keyword identification is closer to a generative task. Our
contribution can be summarized as follows:
• Approach: We propose Cupid, which combines modern LLMs with the traditional DBRD
technique to enhance the accuracy of DBRD in software systems with the typical number of bug
reports.

• Evaluation: We evaluate Cupid on three datasets from open-source projects and compare
Cupid with three prior state-of-the-art approaches. The experimental results indicate that Cupid
surpasses the performance of these existing DBRD approaches. Notably, Cupid achieves RR@10
scores ranging from 0.59 to 0.67 across all the datasets analyzed.
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• Direction:We show that leveraging ChatGPT indirectly in conjunction with existing approaches
can be beneficial. We anticipate that this will pave the way for future research to explore
innovative ways to utilize state-of-the-art techniques with traditional ones.
The structure of this paper is as follows. Section 2 introduces the background of LLMs and DBRD.

Section 3 presents the details of Cupid. We describe the experimental design in Section 4. Section 5
presents the experimental results. We discuss the threats to validity in Section 6. Section 7 discusses
the related work. Finally, Section 8 concludes this paper and discusses future work.

2 BACKGROUND

2.1 Large Language Models

With easier access to large-scale datasets and the rapid development of hardware, recent years
have witnessed the rapid development of various large language models (LLMs) [19, 22, 26, 41,
46, 64, 65, 70]. LLMs are pre-trained on massive amounts of texts and are capable of capturing
the semantics of the texts. Most of them are based on the Transformer architecture [66] and are
trained with the self-supervised learning paradigm. These models have achieved great success
initially in the natural language processing (NLP) field and then have been widely used in solving
software engineering tasks, such as API recommendation [31], code search [28], and pull request
title generation [73]. For the LLMs with less than 1 billion parameters, such as CodeBERT [28],
they can be directly fine-tuned on the downstream tasks to achieve better performance.
Most recently, LLMs with billions of parameters have been proposed, such as GPT-3 [19],

PaLM [22], and LLaMa [64]. These models have demonstrated exceptional performance in various
NLP tasks, ranging from translation [33] to grammatical error correction [27] and even fixing
program bugs [56]. For such LLMs with billions of parameters, it is infeasible to fine-tune all the
parameters using common hardware. Instead, they are usually used under the few-shot or zero-shot
learning paradigm. These LLMs demonstrated great potential when only a few or no examples are
available for the downstream tasks [27, 49].
In this study, to solve the DBRD task, we aim to leverage the power of LLMs. Specifically, we

experiment with ChatGPT [8]. Launched by OpenAI in November 2022, ChatGPT has gained
extensive attention from both academia and industry [17, 36]. ChatGPT has shown to be capable
of responding effectively to a wide range of tasks. In a recent study by Bang et al. [17], ChatGPT
is shown to achieve remarkable zero-shot performance on multiple tasks. In particular, ChatGPT
outperforms the previous state-of-the-art zero-shot models in 9 out of 13 evaluation datasets,
with the studied tasks ranging from sentiment analysis to question answering. As a successor of
InstructGPT [46], ChatGPT employs reinforcement learning from human feedback [23, 46, 57] to
align the model’s output with human instructions. Thus, the reliability and accuracy of the model
can be improved over time.

2.2 Duplicate Bug Report and its Detection

In this section, we first introduce the essential concepts, including bug reports and duplicate bug
reports, and finally, we discuss the task of DBRD.
Bug reports are the primary means for users to communicate a problem or request features to

developers [18]. Software projects usually rely on issue tracking systems to collect these bug reports.
While the supported fields can vary from system to system, the textual information is included
in all the issue tracking systems. The textual fields in a bug report usually consist of a summary
(title) and a description. In Bugzilla or Jira, there are also several categorical fields, such as
priority (bug assignees use this to prioritize their bug), product, component, etc.
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Fig. 1. An example of duplicate bug report detection in Microsoft VSCode GitHub repository: issue #131770.

DBRD aims to correctly link a duplicate bug report towards its master bug report. Following
prior works [53, 54, 59], we denote the first submitted bug report on a specific fault as the master

bug report and the subsequent bug reports on the same fault as duplicates. All the bug reports
which are duplicates of each other, including master and duplicates, are in the same bucket. To help
understand these concepts easier, we can imagine a bucket as a Hash Table, where the key is the
master bug report, while the values are duplicate bug reports and themselves. Thus, for a unique
bug, both the key and value would be just itself.
In the literature, depending on the problem setting, DBRD has been evaluated in two manners,

i.e., (1) classification and (2) ranking. In the classification manner, the task is to classify whether
two bug reports are duplicates or not. DC-CNN [30] and HINDBR [69] are two recent endeavors
in this manner. In the ranking manner, the task is to rank the candidate bug reports according
to their similarity to the given bug report. Referring to the Hash Table metaphor earlier, given a
newly submitted bug report, DBRD technique finds the bucket to which it belongs (also equivalent
to linking duplicate bug reports to its master). If it does not belong to any existing bucket, a new
bucket in which the key and value are itself should be created. In this work, we focus on the
ranking manner, which is more practical in real-world applications. One example of practical use is
vscodebot, a bot applied in the Microsoft VSCode GitHub repository. Its feature includes looking
for potential duplicate issues. Figure 1 shows the duplicate issue suggestions made by vscodebot
on issue #131770 [9].

In the past decades, researchers have proposed various approaches to address the DBRD task in
the ranking manner [45, 67]. Different DBRD approaches mainly differ in (1) feature engineering:
which features in bug reports are selected and how these features are represented, and (2) similarity
measurement: how to measure the similarity between two bug reports [61]. In terms of feature
engineering, we further break down into two parts: (1) what features are selected (2) how to represent
the features. All existing methods use textual information, and most of them use categorical
information. Textual features, i.e., summary and description, include the most useful information
about a bug. Different methods differ in which categorical features to use. To model these features,
traditional methods utilize bag-of-words, character-level N-gram, or 𝐵𝑀25𝑒𝑥𝑡 to model textual
features [32, 59, 61], while bag-of-words or hand-crafted methods are usually used to model
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Fig. 2. Cupid contains three stages: In Stage 1, it applies selection rules to select the test bug reports that need

to be processed; In Stage 2, it utilizes ChatGPT to process the selected bug reports; In Stage 3, it leverages

REP to retrieve potential master bug report for each test bug report.

categorical features. Deep learning-based methods utilize word embeddings, such as GloVe [48]
and word2vec [44], to represent the textual information. Other types of neural networks, such as
HIN2vec [29], are used to represent categorical information. For similarity measurement, traditional
methods usually use Cosine, Dice, and Jaccard similarity [32, 54]. While some deep learning-based
models also adopt this similarity measure [25], some of them leverage neural networks to learn the
similarity [53].

3 APPROACH

We propose Cupid to combine the advantages of both the traditional DBRD approach and LLM.
As mentioned earlier, our work focuses on solving the DBRD challenge in the repositories with a
typical number of issues; evidence shows that traditional DBRD approaches would fit more in this
condition than deep learning-based approaches [72]. Figure 2 shows an overview of the proposed
method. The overall process consists of three main stages: (1) Applying selection rules to select the
bug reports that need to be processed by ChatGPT, (2) Running ChatGPT with prompt template to
get the essential keywords of the selected bug reports, and (3) Applying REP to retrieve potential
master bug reports.

In the sections that follow, we first introduce the datasets used in this work. Then, we describe
the selection rules and prompt template used by Cupid. Finally, we introduce the REP approach.

3.1 Applying Selection Rules

Considering the computational cost of ChatGPT, we did not run ChatGPT on all the bug reports in
the test dataset. Similarly, in practice, we do not need to run ChatGPT on each newly submitted
bug report. To further improve efficiency while keeping accuracy, we explore and propose selection
rules. These rules are based on the length and content of the bug reports, with a goal to prioritize
bug reports that are harder to process by REP while reducing the number of bug reports that are
fed into ChatGPT. The selection criteria are as follows:

Length:We select bug reports whose description is considered to be long. We consider bug reports
whose description is longer than n words as long bug reports. We get n by calculating the 75th
percentile of the length of description in the training set. The reason why we select long bug reports
is that long bug reports are usually not concise and contain long stack traces and code snippets.
These long bug reports would make it challenging for REP to retrieve the potential master bug
reports.
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Content: We select the bug reports whose description contains code snippets or URLs. We use
regular expressions to match and select these bug reports. Note that after keeping long bug reports,
we still have bug reports that contain code snippets or URLs. Some bug reports are very short and
with the majority of the content being code snippets or URLs. For developers, this information
is useful. However, for a DBRD method, this information can be hard to process. We select these
bug reports because not all the code snippets and URLs are useful for REP to retrieve the potential
master bug reports. We also do not directly remove code snippets or URLs. The reason is that we
want to keep the original structure of the bug reports for ChatGPT to understand the language
better. We then utilize ChatGPT to identify keywords from these bug reports.

3.2 Running ChatGPT with Prompt Template

After Stage 1, we run ChatGPT on the selected bug reports, i.e., either (1) the description is long
or (2) the description contains code snippets or URLs.
Prompt [40] is a set of instructions that can be used to probe LLMs to generate the target

outcome [17]. Prior studies have empirically shown that ChatGPT is sensitive to prompts. Thus,
for different tasks, the prompts should be carefully designed to enable LLMs to demonstrate their
abilities.

We craft the prompt template used by Cupid as shown below.

Prompt Template:
I have a bug r e p o r t which c on t a i n s summary and d e s c r i p t i o n . I want you to s e l e c t

keywords from both p a r t s which keep the main meaning o f the bug r e p o r t . These
keywords would be used f o r d u p l i c a t e bug r e p o r t d e t e c t i o n . Output fo rmat : `

Summary : S e l e c t e d Keywords \ n De s c r i p t i o n : S e l e c t e d Keywords ` \ n \ n >>>
Summary : [Summary] \ n \ n >>> De s c r i p t i o n :

[Description]

This template is designed for a single-turn dialogue. For each bug report, we open a new dialogue
with ChatGPT. After getting the response from ChatGPT, we replace the original Summary and
Description in the bug report with the returned identified keywords of Summary and Description.
We keep the remaining part of the bug report unchanged.

Regarding the design of the prompt template, our intuition is that we consider bug reporters
are likely to have more expertise and domain knowledge than ChatGPT. Therefore, the language
and terms they use when reporting bugs may be similar to each other, and this similarity can be
leveraged by DBRD methods. It would benefit more not to replace the whole expression but rather
select and keep the essential information for DBRD methods to process. To support our intuition,
we also conduct experiments with other prompt templates and report the results in Section 5.

3.3 Retrieving Potential Master Bug Reports

Considering the superiority of REP in the task of DBRD shown in a recent study [72], especially
on projects with a typical number of issues, we use REP as the DBRD approach in Cupid. Here, we
briefly introduce the REP approach to make the paper self-contained. We refer the readers to the
original paper [59] for more details.

As shown in Formula 1, REP is a linear combination of seven features, including textual features
and categorical features.

𝑅𝐸𝑃 (𝑑, 𝑞) =
7∑︁

𝑖=1
𝑤𝑖 · 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 (1)
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, where 𝑑 is the bug report in the repository 𝑅, 𝑞, is the query (i.e., new bug report),𝑤𝑖 is the weight
of the 𝑖-th feature, and 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 is the 𝑖-th feature. The first two features are both textual features,
and the rest five features are categorical features. Figure 2 shows how to get each feature.

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1 (𝑑, 𝑞) = 𝐵𝑀25𝐹𝑒𝑥𝑡 (𝑑, 𝑞) //of unigrams
𝑓 𝑒𝑎𝑡𝑢𝑟𝑒2 (𝑑, 𝑞) = 𝐵𝑀25𝐹𝑒𝑥𝑡 (𝑑, 𝑞) //of bigrams

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒3 (𝑑, 𝑞) =
{
1, if 𝑑 · 𝑝𝑟𝑜𝑑 = 𝑞 · 𝑝𝑟𝑜𝑑
0, otherwise

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒4 (𝑑, 𝑞) =
{
1, if 𝑑.𝑐𝑜𝑚𝑝 = 𝑞.𝑐𝑜𝑚𝑝

0, otherwise

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒5 (𝑑, 𝑞) =
{
1, if 𝑑.𝑡𝑦𝑝𝑒 = 𝑞.𝑡𝑦𝑝𝑒

0, otherwise

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒6 (𝑑, 𝑞) =
1

1+ | 𝑑.𝑝𝑟𝑖𝑜 − 𝑞.𝑝𝑟𝑖𝑜 |

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒7 (𝑑, 𝑞) =
1

1+ | 𝑑.𝑣𝑒𝑟𝑠 − 𝑞.𝑣𝑒𝑟𝑠 |

(2)

The first two features regard the textual similarity between two bug reports over the fields
summary and description. These two textual features are calculated by 𝐵𝑀25𝐹𝑒𝑥𝑡 between bug
report 𝑑 and query bug report 𝑞. 𝐵𝑀25𝐹 [52, 71] is an effective textual similarity function for
retrieving documents that have structures. The authors of REP extend 𝐵𝑀25𝐹 by considering term
frequencies in queries and proposed 𝐵𝑀25𝐹𝑒𝑥𝑡 .

In 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1, summary and description are represented in uni-gram, while in 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒2, summary
and description are represented in bi-gram. Thus, the input of 𝐵𝑀25𝐹𝑒𝑥𝑡 consists of a bag of uni-
grams and bi-grams in both features. For 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒3−5, they are the categorical features of product,
component, and type, respectively. If the corresponding field value from 𝑑 and 𝑞 is the same, the
value of the feature is 1, otherwise, it is 0. For 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒6−7, they are the categorical features of
priority and version, respectively. They are calculated by the reciprocal of the distance between
the corresponding field value from 𝑑 and 𝑞. Overall, the REP approach contains 19 free parameters
with different initial values. These parameters are tuned by gradient descent.

4 EXPERIMENTAL DESIGN

4.1 ResearchQuestions

To understand whether Cupid performs better compared to existing state-of-the-art approaches
and whether each component of Cupid is useful, we answer the following two research questions
(RQs):
• RQ1: How effective is Cupid compared to the state-of-the-art approaches?

• RQ2: How effective are the components of Cupid? To answer this RQ, we conduct an ablation
study on the components of Cupid. This RQ is further divided into the following sub-RQs:
– RQ2.1: How effective is the prompt template?

– RQ2.2: How effective are the selection rules?

– RQ2.3: How effective is ChatGPT compared to other LLMs?
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Table 1. Dataset statistics. Cupid here refers to the selected bug reports run by ChatGPT.

Dataset Total Bugs Train. Pairs Valid. Pairs

Test

Dup. Bugs Cupid

Spark 9,579 626 26 81 59
Hadoop 14,016 626 27 92 57
Kibana 17,016 724 28 184 114

4.2 Dataset

As mentioned in Section 1, we are concerned about boosting the performance of DBRD, especially
in the bug repositories with the typical number of issues. Therefore, the target datasets are those
that contain a typical number of issues. We employ three datasets, i.e., Spark, Hadoop, and Kibana
datasets, which are provided by a recent benchmarking study by Zhang et al. [72]. These datasets
contain around 10k issues each, which is considered a typical number of issues. These datasets are
recent issues, ranging from 2018 to 2022, which addressed the age bias, i.e., the model performs
differently on the recent data and old data. Spark and Hadoop are two popular open-source
distributed computing frameworks. They both use Jira as their issue tracking system. Kibana is a
visualization tool for Elasticsearch, and it uses GitHub as its issue tracking system. The statistics of
the datasets are shown in Table 1. The duplicate and non-duplicate pairs were sampled by Zhang
et al. [72]. Their ratio is 1:1. We obtained the data in the dataset provided by Zhang et al. In our
experiment, we fixed the number of training and validation pairs. The number of duplicate bug
reports in the test set is the bug reports we investigate. We report the performance of each approach
in terms of how they perform in retrieving the master bug reports.

4.3 Evaluation Metrics

Following prior works onDBRD [16, 25, 54, 72], we only use Recall Rate@𝑘 (RR@𝑘) as the evaluation
metric, where 𝑘 represents the number of bug reports to be considered. Note that a few other
works have also adopted Mean Average Precision (MAP) in the DBRD literature. However, since
MAP considers all of the predicted positions, it is not suitable for our case, where only the top 𝑘
predictions matter. This is based on real-world practice, where developers are more likely to check
the top 𝑘 predictions rather than all of the predictions. A survey on practitioners’ expectations
towards fault localization also shows that around 98% of respondents are not willing to check the
predictions beyond the top-10 to find the faulty element [35].

Furthermore, as already discussed in early work [54], the two widely used metrics in information
retrieval, i.e., Precision@𝑘 and Recall@𝑘 , do not fit into how DBRD works. For each query bug
report, we only have a master bug report to look for (i.e., the relevant item is only 1). Consider 𝑘 = 10,
a successful prediction would lead to Precision@10=1/10(10%), and Recall@10=1/1(100%); otherwise,
we will get Precision@10=0 and Recall@10=0. Therefore, we adopt RR@𝑘 as the evaluation metric.

Following the definition in prior works [53, 55, 59, 67], RR@𝑘 is defined as the percentage of
duplicate bug reports that are correctly assigned to the bucket they belong to when a model makes
a top-𝑘 prediction for each test bug report. In our experiment, RR@𝑘 will measure how well DBRD
techniques correctly link the duplicate bug reports to their master bug report. A higher RR@𝑘

indicates that more bug reports in the test set are correctly linked to the bucket they belong to
when a model retrieves top-𝑘 prediction.
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𝑅𝑒𝑐𝑎𝑙𝑙𝑅𝑎𝑡𝑒 =
𝑁𝑟𝑒𝑐𝑎𝑙𝑙𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙

(3)

Formula 3 shows how to calculate the Recall Rate. 𝑁𝑟𝑒𝑐𝑎𝑙𝑙𝑒𝑑 refers to the number of duplicate
bug reports whose bucket (master bug report) are in the suggested list (with a size of [1,2,...,𝑘]).
𝑁𝑡𝑜𝑡𝑎𝑙 refers to the number of duplicate bug reports investigated. Considering different sizes of the
suggested list, i.e., 𝑘 , we can get RR@𝑘 . Following the benchmarking work by Zhang et al. [72], in
our case, we consider at most 10 predictions, i.e., 𝑘 = [1, 2..., 10].

To facilitate understanding, we show an example to help explain how RR@𝑘 is calculated. Assume
that we have a test set with three duplicate bug reports, which we call 𝐵1, 𝐵2, and 𝐵3, that we need
to match with their master bug reports. We adopt a DBRD technique (e.g., REP) to suggest the top
10 potential master bug reports for each test bug report. If REP manages to identify 𝐵1’s master
bug report in the 3rd position of the suggested list, we’ll consider it a hit at the 3rd prediction. Next,
𝐵2 is also correctly matched with its master bug report, which appears in the 5th position in the
suggested list. However, REP fails to retrieve 𝐵3’s master bug report in the top-10 predictions. This
means we have two successful and one failed detection. If we set 𝑘 = 1 or 𝑘 = 2, then the RR@𝑘 is
0, as REP does not rank the correct master bug report in the top two positions for any of the three
duplicate bug reports in the test set. On the other hand, if we set 𝑘 = 3 or 𝑘 = 4, then the RR@𝑘 is
1/3, as REP successfully matches 𝐵1’s master bug report in the third position. Similarly, if we set
𝑘 = 5, 6, ..., 10, then the RR@𝑘 is 2/3, as REP successfully matches the master bug reports for 𝐵1
and 𝐵2.

4.4 Compared Techniques

In this work, we compare Cupid with state-of-the-art DBRD techniques, which consider DBRD as
a ranking problem, i.e., REP [59], Siamese Pair [25], and SABD [53].

REP [59] The details of REP can referred in Section 3.3.

Siamese Pair [25] is the first approach that leverages deep learning for DBRD. As its name
suggests, Siamese Pair utilizes Siamese variants of Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) trained onmax-margin objective to distinguish similar bugs from
non-similar bugs. Siamese Pair adopts word embedding to represent the textual data as numerical
vectors. Then, it employs three different types of neural networks to encode summary, description,
and categorical features according to their properties. Specifically, summary is encoded by bi-LSTM,
description is encoded by a CNN, while the categorical information is encoded with a single-layer
neural network. When a new bug report comes, Siamese Pair encodes the bug report with the
trained model. It then calculates the cosine similarity between the new bug report and each bug
report in the master set and gives top k predictions.

SABD [53] is the latest deep learning-based DBRD approach. It consists of two sub-network
modules, where each module compares textual and categorical data from two bug reports. In the
textual sub-network, the soft-attention alignment mechanism [47] compares each word in a bug
report with a fixed-length representation of all words in the other bug report. By doing so, SABD
learns the joint representation of bug reports. In the categorical sub-network, each categorical
field relates to a lookup table that links the field value to a real-valued vector. The output vector
from each sub-module is concatenated and fed to a fully connected layer. Finally, a classifier layer,
which is a logistic regression, produces the final prediction, i.e., whether the two bug reports are
duplicates.
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In RQ2.3, we also compare ChatGPT with other open-source LLMs. We select three LLMs, i.e.,
Vicuna-13B (i.e., lmsys/vicuna-13b-v1.5 in Hugging Face library [68]), WizardLM-13B (i.e.,
WizardLM/WizardLM-13B-V1.2), and Llama 2-13B-Chat (i.e., meta-llama/Llama-2-13b-chat-hf)
based on their performance in MMLU benchmark on the chatbot leaderboard 1 in August 2023.
Due to the limit of the computing resources, we were only able to run the LLMs containing less or
equal to 13B parameters.

Vicuna-13B [21] is an open-source chatbot trained by fine-tuning Llama on 70k user-shared con-
versations collected from ShareGPT.com. Vicuna-13B was trained on top of Stanford’s Alpaca [63]
with three main improvements: (1) multi-turn conversations; (2) memory optimizations: it is worth
noting that the max context length of Vicuna-13B was expanded to 2,048; and (3) cost reduction.
We utilized the variant which fine-tuned Llama 2.

WizardLM-13B [70] propose an automatic method named Evol-Instruct to mass-produce open-
domain instructions. Evol-Instruct starts with simple initial instructions and then re-writes them
step-by-step into more complex instructions. WizardLM fine-tuned Llama with mixed generated
instruction data. The experimental results show that WizardLM achieves more than 90% capacity
of ChatGPT on 17 out of 29 skills. Similar to Vicuna-13B, we utilized the variant of WizardLM
which fine-tuned Llama 2.

Llama 2-13B-Chat [65] is a fined-tunes version of LLama 2 optimized for dialogue use cases. It
contains three variants, i.e., 7B, 13B, and 70B parameters. LLama 2 follows most of the pertaining
setting and model architecture from LLama 1 [64]. The primary architectural differences contain
increased context length and grouped-query attention. Furthermore, Llama 2-13B-Chat undergoes
instruction tuning and RLHF. Note that although Llama 2-13B-Chat can take up to 4,096 tokens,
we set the max token length to 2,048 as Vicuna-13B andWizardLM-13B.

4.5 ChatGPT Setup

Given that ChatGPT is still fast evolving, it has undergone several iterations [? ]. In this study, we
worked on the GPT-3.5 version. To interact with ChatGPT, we used an open-sourced API [2] that
creates a chat window on the ChatGPT website. It saved us from the manual labor of opening a
chat window and copying the response back. Although there is an official ChatGPT API available,
we were not able to use it without paying for it. Therefore, we chose to use the free version of
ChatGPT, which we believe to have a wider range of users compared to the paid one. As such, our
results would be more valuable as they are applicable to a wider range of users.

During the experiments, for each query bug report, we initialize a new conversation to avoid the
influence of the previous conversation on other bug reports. Since ChatGPT may generate different
answers for the same query, we ran ChatGPT five times for each query and aggregated the results
(i.e., summing up the 5-round results) to obtain the final answer.

4.6 Implementation

To fairly compare Cupid with the baselines, we fix the training pairs for all techniques. Since there
is randomness in the deep learning-based models, i.e., Siamese Pair and SABD, the reported results
were the average results after running them five times. The implementation details can be found in
our replication package [3].

1https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Table 2. Recall Rate@𝑘 obtained on the Spark dataset. The best performance in terms of RR@10 is high-

lighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.346 0.383 0.457 0.481 0.481 0.556
Siamese Pair 0.037 0.049 0.059 0.064 0.074 0.121
SABD 0.202 0.247 0.281 0.294 0.304 0.331

Cupid 0.346 0.395 0.432 0.469 0.481 0.593

Table 3. Recall Rate@𝑘 obtained on the Hadoop dataset. The best performance in terms of RR@10 is

highlighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.402 0.489 0.522 0.554 0.576 0.609
Siamese Pair 0.033 0.046 0.057 0.063 0.076 0.093
SABD 0.215 0.267 0.293 0.304 0.324 0.411

Cupid 0.391 0.511 0.565 0.576 0.609 0.652

Table 4. Recall Rate@𝑘 obtained on the Kibana dataset. The best performance in terms of RR@10 is

highlighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.364 0.440 0.527 0.560 0.587 0.620
Siamese Pair 0.020 0.036 0.050 0.063 0.076 0.092
SABD 0.293 0.382 0.428 0.467 0.489 0.555

Cupid 0.408 0.522 0.571 0.603 0.62 0.674

5 RESULTS

5.1 RQ1: Comparing with baselines

Table 2, 3, and 4 show the results of Cupid and the baselines on the Spark, Hadoop, and Kibana
datasets. Overall, Cupid consistently improves the DBRD performance in terms of RR@10 on all
three datasets, yielding an improvement of 6.7% (Spark) to 8.7% (Kibana) over the prior state-of-the-
art approach REP. This improvement is obtained by successfully utilizing the language generation
ability of ChatGPT to transform the bug reports into a format where only essential information
is kept. In comparison with the best-performing deep learning-based approach, i.e., SABD, we
observe an improvement of up to 79.2% on the Spark dataset. In the low-volume datasets, SABD
and Siamese Pair lose to non-deep learning approaches, i.e., REP and Cupid.
Comparing the performance of Siamese Pair and SABD in all three datasets, we can find that

Siamese Pair suffers more from the challenge of limited training data. Siamese Pair performs less
than 50% of SABD in all the three datasets in terms of RR@10. We argue that when there is a lack
of adequate training data, it is less meaningful to compare different deep learning-based models.

Dataset-wise, all approaches perform relatively worse on the Spark dataset and relatively better
on the Kibana dataset. The observation aligns with the findings from prior studies [53]: the same
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(a) on Spark dataset (b) on Hadoop dataset

(c) on Kibana dataset (d) All the three datasets

Fig. 3. Successful prediction Venn diagram

DBRD approach, i.e., SABD, achieves a variety of RR@10 on different datasets examined, ranging
from 0.55 (on OpenOffice dataset) to 0.7 (on Netbeans dataset). It shows that the performance of a
DBRD technique also depends on the dataset characteristics. This observation inspires us that it
would be beneficial for each dataset if we tune the prompt template based on the characteristics of
each dataset. We leave this for future work to boost the performance further.
Figure 3 shows the Venn diagrams for successful predictions made by the prior state-of-the-

art method, i.e., REP, and Cupid on each dataset and all datasets combined. We see that Cupid
successfully retrieves more master bug reports compared to REP. On the Hadoop and Kibana
datasets, only Cupid successfully retrieved more master bug reports, while REP did not successfully
retrieve more.

To demonstrate the ability of Cupid, we show an example, i.e., the query bug report is HADOOP-17091[7]
where REP failed to predict the correct master bug report in the top-10 positions, while Cupid
managed to. Figure 4 shows the summary and description of this issue. We can see that there
is no natural language in the description, containing only error messages. Thus, REP considered
the most possible master bug report to be HADOOP-16648, which also contains a large portion
of the error messages. We checked the single-run result by ChatGPT. Thanks to the language
understanding and generation ability of ChatGPT, Cupid identified the keywords: Javadoc, HTML
version, HTML4, HTML5, warning, comments, valid, GeneratedMessageV3, package, not
found, error from the description of HADOOP-17091. The generated shorter description on
the query bug report has several words overlap with the description of the real master bug report
(HADOOP-16862). It enables Cupid to successfully rank at the first position. Since the real master
bug report has a long error message as the description, REP failed to retrieve it. This example
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Fig. 4. The case where Cupid succeeded while REP failed: HADOOP-17091

Fig. 5. The case where Cupid failed while REP succeeded: SPARK-33661

shows that ChatGPT can be helpful when descriptions are long and contain non-natural language
texts. It can generate the most important keywords, which are vital for duplicate detection.
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Listing 1. Prompt Template 1

Prompt Template 1:
Rephrase the f o l l ow i n g bug r e p o r t in f i v e d i s t i n c t s t y l e s , t o avo id r e p e t i t i o n ,

wh i l e keep ing i t s meaning . Output fo rmat : ` [ 1 −5 ] . Summary : [ Rephrased Summary
] \ n D e s c r i p t i o n : [ Rephrased De s c r i p t i o n ]` \ n \ n >>> Summary : [SUMMARY] \ n \ n
>>> De s c r i p t i o n : [DESCRIPTION]

Based on Figure 3, we can also observe that on the Spark dataset, REP can actually predict a
bug report, i.e., SPARK-33661 [14] that Cupid fails to predict. Figure 5 shows the summary and
description part of this issue. We checked the single-run result by ChatGPT. The identified
keywords are: Summary: Unable, load, RandomForestClassificationModel, trained, Spark
2.x, Description: load, RandomForestClassificationModel, trained, Spark 2.x, Spark
3.x, exception, raised, schema incompatibility, saved, data, expected, existing,
random forest models, upgrade, retrain. The selected keywords look reasonable since they
keep the important identities that are related to this bug. The master bug report, which was listed
at the top-1 position by Cupid is SPARK-31169 [13]. This bug report is about different results that
are obtained when building random forest models using different versions of Spark. It is clear that
it is not a duplicate of SPARK-33661. However, it is not hard to find that in the summary of this
issue, common words exist, such as Random Forest, SparkML 2.3.3 vs 2.4.x. In addition, in
the description part, we can find similar words, e.g., train,version,spark,model, which are
quite relevant to the identified keywords in SPARK-33661. This example shows that, in some cases,
keywords are not sufficient to identify duplicate bug reports. The same set of words may lead to
different errors.

Answer to RQ1: Cupid outperforms the best baseline by 6.7%, 7%, and 8.7% in terms of Recall
Rate@10 on the Spark, Hadoop, and Kibana datasets, respectively.

5.2 RQ2: Ablation Study

RQ2.1: The effectiveness of Prompt Templates.We first investigate the effectiveness of different
prompt templates on the Spark dataset due to the fact that it is the smallest dataset. We came up
with a basic prompt template (i.e., Prompt Template 1), as shown in Listing 1.

In Prompt Template 1, we aim to describe the task and requirement in a simple way. We
also specify the output format. The hypothesis is different stakeholders, e.g., users, developers, or
testers, have different expertise and experience levels; thus, how they write bug reports would
vary. Therefore, we prompt ChatGPT to get alternative bug reports. This procedure can be viewed
as data augmentation [24], where the goal is to generate auxiliary samples that are semantically
similar to the original sample. In the beginning, we believed prompting ChatGPT to rephrase the
bug report should be one of the most direct ways to achieve this goal.
Thus, we further experimented with a more comprehensive Prompt Template 2, where we

added a persona description and also included the aim of this step. This prompt template is an
augmented version of Prompt Template 1. Listing 2 shows the template.
Table 5 shows the results of querying ChatGPT with the two templates above and with the

template employed in Cupid. We observe that Prompt Template 2, which is more comprehensive
than Prompt Template 1, indeed leads to a slightly better performance: it surpassed the method
with Prompt Template 1 by 2.3% in terms of RR@10. Although these two templates convey very
similar meanings, with one being more succinct and the other being more verbose, they did make
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Listing 2. Prompt Template 2

Prompt Template 2:
I want you to a c t as a c o l l a b o r a t o r f o r ma in t a i n i ng bug r e p o r t s from a so f twa r e

p r o j e c t . Your j ob i s to r eph r a s e the bug r epo r t , t o avo id r e p e t i t i o n , wh i l e
keep ing i t s meaning . The aim o f t h i s s t e p i s to he lp f i l t e r d u p l i c a t e bug
r e p o r t s . You w i l l need to wr i t e f i v e d i f f e r e n t v e r s i o n s o f the bug r e p o r t you
encoun te r . You can d e l e t e the c on t e n t s you p e r c e i v e u s e l e s s . Output fo rmat :

` [ 1 −5 ] . Summary : [ Rephrased Summary ] \ n De s c r i p t i o n : [ Rephrased De s c r i p t i o n
] ` . Now , your need to r eph r a s e the f o l l ow i n g bug r e p o r t : \ n \ n >>> Summary :
[SUMMARY] \ n \ n >>> De s c r i p t i o n : [DESCRIPTION]

Table 5. Ablation study on different prompt templates: Recall Rate@𝑘 obtained on the Spark dataset. The

best performance in terms of RR@10 is highlighted accordingly. PT is short for “prompt template”.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

w/ PT 1 0.309 0.37 0.432 0.457 0.469 0.519
w/ PT 2 0.333 0.37 0.432 0.457 0.469 0.531
Cupid 0.346 0.395 0.432 0.469 0.481 0.593

an impact on the performance of running rephrased bug reports in DBRD. Using the final template
in Cupid can boost the performance of these two prompt templates by 11.7% in terms of RR@10.
These results indicate the significance of prompts.

At first glance, both Prompt Templates 1 and 2 seemmore intuitive than the final prompt template
we use (the one shown in Section 3). Prompt Template 1 and 2 queried ChatGPT to rephrase, while the
final prompt in Cupid queried ChatGPT to select keywords. However, after checking the rephrased
bug reports generated by ChatGPT with Prompt Template 1 and 2, we believe rephrasing the test
bug reports is not the right direction to pursue. In retrospect, it would make more sense to rephrase
all bug reports in the dataset, regardless of training or testing. However, as mentioned in Section 1,
the drawback is the expenses of running ChatGPT. There is a widely-experienced error: Too many
requests in 1 hour, try again later [1], which many users complain about. Despite the lack
of an official document specifying the exact number of requests that can be made with ChatGPT per
hour, this issue commonly occurs, hindering the whole DBRD process. Given the major difference
between the query bug report and candidate bug reports, only rephrasing query bug reports would
not make it easier to retrieve the master bug reports. In the context of traditional DBRD approaches,
it could make the distance between the rephrased bug report and the master bug report further.

RQ2.2: The effectiveness of Selection Rules. Here, we also conducted experiments on Spark
dataset to investigate the effectiveness of selection rules.
Table 6 shows how many bug reports need to query ChatGPT after adopting (1) no-selection

rules, (2) selection by length, and (3) selection by length and content. If we only use length as the
selection criteria, we will only need to run ChatGPT on 40.7%, 27.2%, and 41.8% of the original
test bug reports in Spark, Hadoop, and Kibana dataset, respectively. While the computational cost
would be reduced, it is essentially a trade-off: we want to achieve both efficiency and accuracy,
which can be contradictory in some cases. We want to take full advantage of ChatGPT with minimal
computational costs. Other than length, we also identify the content criteria. After adopting both
length and content criteria, the bug reports needed to be processed by ChatGPT increased and
accounted for 72.8%, 62%, 62%, which still saved more than 25% bug reports from processing.
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Table 6. Number of test bugs and bugs that need to run after adopting selection rules.

Selection Rule

Dataset

Spark Hadoop Kibana

None 81 92 184
Length 33 25 77
Length+Content 59 57 114

Table 7. Ablation study on selection rules: Recall Rate@𝑘 obtained on the Spark dataset.

Selection RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

0.333 0.395 0.432 0.469 0.481 0.58
0.346 0.395 0.432 0.469 0.481 0.593

Table 8. Ablation study on ChatGPT: Recall Rate@𝑘 obtained on the Spark dataset.

Model RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

Vicuna-13B 0.358 0.395 0.432 0.432 0.457 0.506
WizardLM-13B 0.370 0.395 0.420 0.444 0.469 0.568
Llama 2-13B-Chat 0.296 0.358 0.383 0.407 0.42 0.494
ChatGPT 0.333 0.395 0.432 0.469 0.481 0.58

Table 7 shows the corresponding results of applying selection rules. Comparing the performance
of no selection rules, i.e., querying all the test bug reports with ChatGPT, and applying both selection
rules, we can observe that after applying the rules, RR@10 improves by 2.2%. Despite only making
a small improvement, it frees at least 25% of the bug reports in the test set from querying ChatGPT.
Here, we do not only save the computational cost but also improve accuracy.

RQ2.3: The effectiveness of ChatGPT. Here, we have conducted experiments on the Spark
dataset to assess the efficacy of ChatGPT in comparison to other open-source LLMs. In a similar
manner, we executed all three LLMs five times, while the generated responses across all five runs
remained the same. We adapted the final version of the prompt template from Cupid, making slight
modifications to ensure compatibility with the appropriate prompt format for each LLM. Listing 3
shows the prompt templates employed by each LLM. The main element, denoted as select keywords,
remains consistent across all templates, while only the formats differ.
Table 8 shows the results with the comparison among ChatGPT and the other three LLMs. We

can observe thatWizardLM-13B can achieve a similar performance as ChatGPT with only 2% drop
in terms of RR@10. Vicuna-13B and Llama 2-13B-Chat perform worse compared to ChatGPT.
The good performance of WizardLM-13B makes it promising to use an open-source LLM for the
DBRD task. Further investigation on when and why open-source LLMs lose to ChatGPT can be put
to take full advantage of the latest advancement of LLMs.

Answer to RQ2: Both prompt templates and selection rules are effective in improving the
performance of Cupid. Furthermore, ChatGPT is better than the three selected open-source
LLMs.
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Listing 3. Prompt Template for Vicuna-13B,WizardLM-13B and Llama 2-13B-Chat

Prompt Template for Vicuna-13B andWizardLM-13B:
"A cha t between a cu r i o u s u se r and an a r t i f i c i a l i n t e l l i g e n c e a s s i s t a n t . The

a s s i s t a n t g i v e s h e l p f u l , d e t a i l e d , and p o l i t e answers to the user ' s q u e s t i o n s
. \ n \ nUSER : I w i l l g iven you a bug r e p o r t summary and a bug r e p o r t d e s c r i p t i o n
. You need e x t r a c t the u s e f u l l keywords from summary and d e s c r i p t i o n ,
r e s p e c t i v e l y . These keywords would be used f o r d u p l i c a t e bug r e p o r t d e t e c t i o n
. You need to r e p l y l i k e t h i s : \ nSummary Keywords : \ nDe s c r i p t i o n Keywords : \
nASSISTANT : Sure ! < / s > \ nUSER : Bug r e p o r t summary : { } \ n \ nBug r e p o r t d e s c r i p t i o n :
{ } \ n \ nASSISTANT : Summary Keywords : " ,

Prompt Template for Llama 2-13B-Chat:
"<<SYS > >\nA cha t between a cu r i o u s u se r and an a r t i f i c i a l i n t e l l i g e n c e a s s i s t a n t .

The a s s i s t a n t g i v e s h e l p f u l , d e t a i l e d , and p o l i t e answers to the user ' s
q u e s t i o n s . \ n<</SYS > >\n [ INST ] \ nUser : I w i l l g iven you a bug r e p o r t summary and
a bug r e p o r t d e s c r i p t i o n . Note t h a t the d e s c r i p t i o n can i n c l u d e l og / e r r o r

message or s t a c k t r a c e s . You need e x t r a c t the u s e f u l l keywords from summary
and d e s c r i p t i o n , r e s p e c t i v e l y . These keywords would be used f o r d u p l i c a t e bug
r e p o r t d e t e c t i o n . You need to r e p l y l i k e t h i s : \ nSummary Keywords : \

nDe s c r i p t i o n Keywords : \ nBug r e p o r t summary : { } \ n \ nBug r e p o r t d e s c r i p t i o n : { } \
n \ n [ / INST ] \ n "

6 THREATS TO VALIDITY

Internal. The main internal threat is whether there is data leakage in ChatGPT. However, since
we do not have access to the training data of ChatGPT, we cannot verify whether there is data
leakage in ChatGPT. Even so, since we did not directly use ChatGPT to compare whether two bug
reports are duplicates, instead, we utilize ChatGPT indirectly, which may not benefit much from
memorizing the training data. Furthermore, we noticed that ChatGPT did not exhibit unrealistic
perfect performance, e.g., reaching 0.9 at RR@10, across different prompt structures. It suggests
that it is less likely for ChatGPT to rely solely on the memorization of its training data. Thus, we
believe this threat is minimal.
External. The primary external threat is the generalizability of our findings. Our focus in this

study is on datasets with a typical number of bug reports, roughly 10𝑘 issues. Therefore, our
results may not extend to datasets with a significantly greater number of bug reports, such as those
containing tens of thousands of issues. Nevertheless, we believe that our findings remain valuable
for the majority of projects. This is supported by the fact that in a dataset of 994 high-quality
projects from GitHub, each project contains an average of 2𝑘 issues [34].

7 RELATEDWORK

Except for the works that studied the DBRD task, other automated bug report management tasks
have also attractedmuch research interest [38, 58, 73, 75]. In this section, we briefly introduce several
studies on automated bug report management tasks, including bug component assignment [58],
developer assignment [38], and issue title generation [74]. Su et al. [58] propose a learning-to-
rank framework that leverages the correct bug assignment history to assign the most appropriate
component to a bug. Instead of only using the features from bug reports, their approach also derives
rich features from this knowledge graph. Lee et al. [38] focus on assigning a bug report to the
most appropriate developer. They propose a framework (i.e., LBT-P) that applies LLMs, such as
RoBERTa [41], to extract semantic information. LBT-P uses knowledge distillation to compress an
LLM into a small and fast model. Additionally, it also introduces knowledge preservation fine-tuning
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to handle the challenge of catastrophic forgetting [43] of LLM. Although the issue is not a new
concept, the automatic issue title generation task has not been studied until recently [20, 74]. Zhang
et al. [74] propose to leverage the state-of-the-art BART [39] model to generate issue titles for bug
reports. The experimental results show that fine-tuning BART can better generate issue titles than
the prior state-of-the-art approach, i.e., iTAPE [20], based on sequence-to-sequence model [62].

8 CONCLUSION AND FUTUREWORK

In this work, we focus on the task of DBRD, especially on projects with a typical number of bug
reports. We investigated how to combine the advantages of both traditional DBRD approach and
LLMs and proposed Cupid. Cupid leverages ChatGPT to identify keywords as the input of the
state-of-the-art traditional DBRD approach REP. We conduct a comprehensive evaluation on three
datasets and compare Cupid with three baselines. The experimental results show that Cupid
outperforms the state-of-the-art DBRD techniques in terms of Recall Rate@10 on all the datasets.
Particularly, Cupid achieves high Recall Rate@10 scores ranging from 0.59 to 0.67 on all the datasets
investigated.

In the future, we plan to investigate the ability of ChatGPT in Cupid under the setting of few-shot
in-context learning. Furthermore, we are also interested in plugging ChatGPT into other bug report
management tasks, such as bug component assignment and developer assignment.

AVAILABILITY

Our replication package is publically available at https://anonymous.4open.science/r/Cupid/.
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