
1

Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug

Report Detection

TING ZHANG, Singapore Management University, Singapore
IVANA CLAIRINE IRSAN, Singapore Management University, Singapore
FERDIAN THUNG, Singapore Management University, Singapore
DAVID LO, Singapore Management University, Singapore

Duplicate bug report detection (DBRD) is a long-standing challenge in both academia and industry. Over the
past decades, researchers have proposed various approaches to detect duplicate bug reports more accurately.
With the recent advancement of deep learning, researchers have also proposed several approaches that leverage
deep learning models to detect duplicate bug reports. It is well acknowledged that the performance of deep
learning-based approaches is highly dependent on the size of the training dataset. In the bug repositories
with a large number of bug reports, deep learning-based approaches have shown promising performance.
However, in the bug repositories with a typical number of issues, i.e., around 10k, the existing deep learning
approaches show worse performance than the traditional approaches. A recent benchmarking study on DBRD
also reveals that the performance of deep learning-based approaches is not always better than the traditional
approaches. However, traditional approaches have limitations, e.g., they are usually based on the bag-of-words
model, which cannot capture the semantics of bug reports. To address these aforementioned challenges, we
seek to leverage a state-of-the-art large language model to improve the performance of the traditional DBRD
approach.

In this paper, we propose an approach called Cupid, which combines the best-performing traditional
DBRD approach REP with the state-of-the-art large language model ChatGPT. Specifically, we first leverage
ChatGPT under the zero-shot setting to get essential information on bug reports. We then use the essential
information as the input of REP to detect duplicate bug reports. We conducted an evaluation by comparing
Cupid with three existing approaches on three datasets. The experimental results show that Cupid achieves
new state-of-the-art results, reaching Recall Rate@10 scores ranging from 0.59 to 0.67 across all the datasets
analyzed. In particular, Cupid improves over the prior state-of-the-art approach by 6.7% - 8.7% in terms of
Recall Rate@10 in the datasets. Cupid also surpassed the state-of-the-art deep learning-based DBRD approach
by up to 79.2%. Additionally, our study demonstrates the significant impact of prompt engineering on the
performance of Cupid. Our work highlights the potential of combining large language models to improve the
performance of software engineering tasks.

CCS Concepts: • Software and its engineering→Maintaining software.

Additional Key Words and Phrases: ChatGPT, Duplicate Bug Reports, Information Retrieval, Large Language
Models

Authors’ addresses: Ting Zhang, Singapore Management University, Singapore, tingzhang.2019@phdcs.smu.edu.sg; Ivana
Clairine Irsan, Singapore Management University, Singapore, ivanairsan@smu.edu.sg; Ferdian Thung, Singapore Man-
agement University, Singapore, ferdianthung@smu.edu.sg; David Lo, Singapore Management University, Singapore,
davidlo@smu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0004-5411/2023/8-ART1 $15.00
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0002-6001-1372
HTTPS://ORCID.ORG/0000-0001-6350-2700
HTTPS://ORCID.ORG/0000-0002-5566-3819
HTTPS://ORCID.ORG/0000-0002-4367-7201
https://orcid.org/0000-0002-6001-1372
https://orcid.org/0000-0001-6350-2700
https://orcid.org/0000-0001-6350-2700
https://orcid.org/0000-0002-5566-3819
https://orcid.org/0000-0002-4367-7201
https://doi.org/XXXXXXX.XXXXXXX

1:2 Zhang et al.

1 INTRODUCTION

As software systems become larger and more complex, it is inevitable that they contain bugs. Bug

reports are the main channel for users to report bugs to developers. Most software projects use
issue tracking systems, such as Bugzilla [5], Jira [10] and GitHub [6], to manage bug reports and
track the progress of bug fixing. When a user finds a bug, they can submit a bug report to the
issue tracking system. Then, the developers will fix the bug according to the description in the
bug report. However, many bug reports are duplicates of the existing bug reports. For example, in
the dataset constructed by Lazar et al. [37], duplicate bug reports represent 12.67% - 23% out of
the total bug reports in a system. It is crucial to identify duplicate bug reports as soon as possible
to avoid wasting developers’ time and effort on fixing the same bug multiple times To improve
the efficiency of bug report management, it is desirable to have an automatic approach to identify
duplicate bug reports.
Over the past decades, various duplicate bug report detection (DBRD) approaches have been

proposed [25, 30, 53, 59, 69]. With the rapid development of deep learning, many deep learning-
based approaches have been proposed in recent years [30, 53, 69]. They have demonstrated superior
performance when the bug repositories are large enough to train the deep learning models. For
instance, SABD [53] achieved over 0.6 in terms of Recall Rate@20 in all the experimented datasets.
One of the common characteristics of these datasets is that they all contain more than 80: bug
reports and over 10: duplicate bug reports in the training data, which is large enough to train a
deep learning model. It is well acknowledged that deep learning models require a large amount
of data to achieve high precision [51]. However, bug repositories of many projects are not large
enough to train a deep learning model.
Based on the dataset provided by Joshi et al. [34], it was discovered that out of the 994 studied

GitHub projects that have more than 50 stars and forks, the average number of issues was 2,365.
Additionally, it is interesting to note that many active projects, including those with more than
100: stars, have fewer than 10: issues. For example, till 5th May 2023, both ohmyzsh/ohmyzsh [11]
and axios/axios [4] have around 4: issues each, while vuejs/vue [15] has around 10: issues.
Therefore, we argue that most projects do not have tens of thousands of issues. The repositories
with tens of thousands of issues are considered as atypical, while a typical repository contains
less than or around 10: issues. It is essential to highlight that young and fast-growing projects,
although currently having a small number of issues, require more attention in handling the DBRD
challenge. For instance, Significant-Gravitas/Auto-GPT [12], which was initially released on
March 30, 2023, now contains less than 2: issues while it gets 124: stars. A recent benchmarking
study on DBRD by Zhang et al. [72] also confirms that the performance of deep learning-based
approaches loses to information retrieval-based approaches when the bug repositories only contain
less or around 10: duplicate bug reports. How to improve the performance of DBRD in the typical

bug repositories remains an open problem.
Prior to the development of deep learning, many non-deep learning-based approaches have been

proposed [32, 54, 59, 60] (we refer to them as “traditional approaches” in this paper). Compared
to deep learning-based approaches, these approaches are more promising for detecting duplicate
bug reports in typical bug repositories. However, traditional approaches rely on either the vector
space model [54] or the bag-of-words model [32]. These models cannot capture the semantics
of bug reports. We seek to improve the performance of non-deep learning based approaches by
considering the semantics of bug reports.
Recently, large language models (LLMs), e.g., Vicuna [21], LLama 2 [65], and ChatGPT [8],

have achieved outstanding performance in a multitude of natural language processing (NLP)
tasks [19, 26, 50]. However, leveraging the potential of LLMs to improve DBRD’s performance is

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug Report Detection 1:3

not trivial. The most straightforward way is to directly query LLMs on whether two bug reports
are duplicates. However, this is impractical due to the following reasons.

(1) Time-consuming and costly.To obtain the potential master bug reports to which a given bug
report may be duplicated, we must pair it with all the bug reports available in the repository.
When a new bug report is submitted, all previously submitted bug reports are considered duplicate
candidates. It is infeasible to query LLMs to compare the given bug report with all the bug reports
in the repository, as the LLMs' response is not instantaneous. While speeding it up is possible (e.g.,
by running many queries at once), it quickly gets very costly for LLMs such as ChatGPT, which
operates on a pay-per-use basis for their API usage.

(2) Ignorance of other bug reports in the repository.If a method only compares two bug reports at a
time, it will not take into account the information present in the other bug reports stored in the
repository. Therefore, it would be hard to decide the relative order of all the duplicate candidates
in order to recommend the top-: duplicate candidates. Although one possibility is in addition to
querying ChatGPT on whether the bug report pair is duplicated or not, we ask ChatGPT to provide
a measure of how con�dent it is in its answer, expressed as a similarity score or con�dence score.
However, without considering the information from other bug reports, the similarity score will be
less reliable.

(3) LLMs are generative AI techniques which are designed to generate contents.Although LLMs have
achieved impressive performance in a multitude of NLP tasks, many researchers argue that LLMs
are only good at language abilities but not at actual reasoning [17, 42]. Thus, to take full advantage
of LLMs, we carefully design the task to ensure its suitability for LLMs. As DBRD requires some
reasoning on how two bug reports are duplicated to each other, it is not suitable to query LLMs
directly.

We presentCupid, which stands for leveragingChatGPT for more accurate duplicate bug report
detection.Cupid aims to tackle the challenges mentioned above when directly querying LLMs
for DBRD. We propose to leverage LLMs as an intermediate step to improve the performance of
the traditional DBRD approach. Based on the recent benchmarking study by Zhang et al. [72],
REP[59] demonstrates the best performance in the datasets with a typical number of issues, which
is also the focus of this work. Thus, we selectREPas the backbone duplicate retrieval method.
Speci�cally,Cupid leverages state-of-the-art ChatGPT to identify keywords from bug reports and
then incorporate them withREPto achieve better performance. By doing so,Cupid avoids using
ChatGPT to compare the given bug report with all the bug reports in the repository. Furthermore,
by standing on the shoulder of the traditional DBRD approach,Cupid also takes the information of
the other bug reports in the repository into consideration. In particular,�" 25� 4GCused byREP
calculates inverse document frequency (IDF), which is a global term-weighting scheme across all
the bug reports. In addition,Cupid prompts ChatGPT to identify keywords from bug reports, which
requests ChatGPT to generate a list of relevant keywords based on the content of a bug report.
Compared to a decision-making task, keyword identi�cation is closer to a generative task. Our
contribution can be summarized as follows:
� Approach: We proposeCupid, which combines modern LLMs with the traditional DBRD

technique to enhance the accuracy of DBRD in software systems with the typical number of bug
reports.

� Evaluation: We evaluateCupid on three datasets from open-source projects and compare
Cupid with three prior state-of-the-art approaches. The experimental results indicate thatCupid
surpasses the performance of these existing DBRD approaches. Notably,Cupid achieves RR@10
scores ranging from 0.59 to 0.67 across all the datasets analyzed.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:4 Zhang et al.

� Direction: We show that leveraging ChatGPT indirectly in conjunction with existing approaches
can be bene�cial. We anticipate that this will pave the way for future research to explore
innovative ways to utilize state-of-the-art techniques with traditional ones.
The structure of this paper is as follows. Section 2 introduces the background of LLMs and DBRD.

Section 3 presents the details ofCupid. We describe the experimental design in Section 4. Section 5
presents the experimental results. We discuss the threats to validity in Section 6. Section 7 discusses
the related work. Finally, Section 8 concludes this paper and discusses future work.

2 BACKGROUND

2.1 Large Language Models

With easier access to large-scale datasets and the rapid development of hardware, recent years
have witnessed the rapid development of various large language models (LLMs) [19, 22, 26, 41,
46, 64, 65, 70]. LLMs are pre-trained on massive amounts of texts and are capable of capturing
the semantics of the texts. Most of them are based on the Transformer architecture [66] and are
trained with the self-supervised learning paradigm. These models have achieved great success
initially in the natural language processing (NLP) �eld and then have been widely used in solving
software engineering tasks, such as API recommendation [31], code search [28], and pull request
title generation [73]. For the LLMs with less than 1 billion parameters, such as CodeBERT [28],
they can be directly �ne-tuned on the downstream tasks to achieve better performance.

Most recently, LLMs with billions of parameters have been proposed, such as GPT-3 [19],
PaLM [22], and LLaMa [64]. These models have demonstrated exceptional performance in various
NLP tasks, ranging from translation [33] to grammatical error correction [27] and even �xing
program bugs [56]. For such LLMs with billions of parameters, it is infeasible to �ne-tune all the
parameters using common hardware. Instead, they are usually used under the few-shot or zero-shot
learning paradigm. These LLMs demonstrated great potential when only a few or no examples are
available for the downstream tasks [27, 49].

In this study, to solve the DBRD task, we aim to leverage the power of LLMs. Speci�cally, we
experiment with ChatGPT [8]. Launched by OpenAI in November 2022, ChatGPT has gained
extensive attention from both academia and industry [17, 36]. ChatGPT has shown to be capable
of responding e�ectively to a wide range of tasks. In a recent study by Bang et al. [17], ChatGPT
is shown to achieve remarkable zero-shot performance on multiple tasks. In particular, ChatGPT
outperforms the previous state-of-the-art zero-shot models in 9 out of 13 evaluation datasets,
with the studied tasks ranging from sentiment analysis to question answering. As a successor of
InstructGPT [46], ChatGPT employs reinforcement learning from human feedback [23, 46, 57] to
align the model's output with human instructions. Thus, the reliability and accuracy of the model
can be improved over time.

2.2 Duplicate Bug Report and its Detection

In this section, we �rst introduce the essential concepts, including bug reports and duplicate bug
reports, and �nally, we discuss the task of DBRD.

Bug reportsare the primary means for users to communicate a problem or request features to
developers [18]. Software projects usually rely onissue tracking systemsto collect these bug reports.
While the supported �elds can vary from system to system, thetextual information is included
in all the issue tracking systems. Thetextual �elds in a bug report usually consist of asummary
(title) and adescription . In Bugzilla or Jira, there are also severalcategorical�elds, such as
priority (bug assignees use this to prioritize their bug),product , component, etc.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug Report Detection 1:5

Fig. 1. An example of duplicate bug report detection in Microso� VSCode GitHub repository: issue #131770.

DBRD aims to correctly link a duplicate bug report towards itsmasterbug report. Following
prior works [53, 54, 59], we denote the �rst submitted bug report on a speci�c fault as themaster
bug report and the subsequent bug reports on the same fault asduplicates. All the bug reports
which are duplicates of each other, includingmasterandduplicates, are in the samebucket. To help
understand these concepts easier, we can imagine abucketas a Hash Table, where the key is the
master bug report, while the values are duplicate bug reports and themselves. Thus, for a unique
bug, both the key and value would be just itself.

In the literature, depending on the problem setting, DBRD has been evaluated in two manners,
i.e., (1)classi�cationand (2)ranking. In theclassi�cationmanner, the task is to classify whether
two bug reports are duplicates or not.DC-CNN[30] and HINDBR[69] are two recent endeavors
in this manner. In theranking manner, the task is to rank the candidate bug reports according
to their similarity to the given bug report. Referring to the Hash Table metaphor earlier, given a
newly submitted bug report, DBRD technique �nds the bucket to which it belongs (also equivalent
to linking duplicate bug reports to its master). If it does not belong to any existing bucket, a new
bucket in which the key and value are itself should be created. In this work, we focus on the
rankingmanner, which is more practical in real-world applications. One example of practical use is
vscodebot, a bot applied in the MicrosoftVSCodeGitHub repository. Its feature includes looking
for potential duplicate issues. Figure 1 shows the duplicate issue suggestions made byvscodebot
on issue #131770 [9].

In the past decades, researchers have proposed various approaches to address the DBRD task in
the ranking manner [45, 67]. Di�erent DBRD approaches mainly di�er in (1) feature engineering:
which features in bug reports are selected and how these features are represented, and (2) similarity
measurement: how to measure the similarity between two bug reports [61]. In terms offeature
engineering, we further break down into two parts: (1) what features are selected (2) how to represent
the features. All existing methods use textual information, and most of them use categorical
information. Textual features, i.e.,summaryanddescription , include the most useful information
about a bug. Di�erent methods di�er in which categorical features to use. To model these features,
traditional methods utilize bag-of-words, character-level N-gram, or�" 254GCto model textual
features [32, 59, 61], while bag-of-words or hand-crafted methods are usually used to model

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:6 Zhang et al.

Fig. 2. Cupidcontains three stages: In Stage 1, it applies selection rules to select the test bug reports that need
to be processed; In Stage 2, it utilizes ChatGPT to process the selected bug reports; In Stage 3, it leverages
REPto retrieve potential master bug report for each test bug report.

categorical features. Deep learning-based methods utilize word embeddings, such as GloVe [48]
and word2vec [44], to represent the textual information. Other types of neural networks, such as
HIN2vec [29], are used to represent categorical information. Forsimilarity measurement, traditional
methods usually use Cosine, Dice, and Jaccard similarity [32, 54]. While some deep learning-based
models also adopt this similarity measure [25], some of them leverage neural networks to learn the
similarity [53].

3 APPROACH

We proposeCupid to combine the advantages of both the traditional DBRD approach and LLM.
As mentioned earlier, our work focuses on solving the DBRD challenge in the repositories with a
typical number of issues; evidence shows that traditional DBRD approaches would �t more in this
condition than deep learning-based approaches [72]. Figure 2 shows an overview of the proposed
method. The overall process consists of three main stages: (1) Applyingselection rulesto select the
bug reports that need to be processed by ChatGPT, (2) Running ChatGPT withprompt templateto
get the essential keywords of the selected bug reports, and (3) ApplyingREPto retrievepotential
master bug reports.

In the sections that follow, we �rst introduce the datasets used in this work. Then, we describe
the selection rules and prompt template used byCupid. Finally, we introduce theREPapproach.

3.1 Applying Selection Rules

Considering the computational cost of ChatGPT, we did not run ChatGPT on all the bug reports in
the test dataset. Similarly, in practice, we do not need to run ChatGPT on each newly submitted
bug report. To further improve e�ciency while keeping accuracy, we explore and propose selection
rules. These rules are based on the length and content of the bug reports, with a goal to prioritize
bug reports that are harder to process byREPwhile reducing the number of bug reports that are
fed into ChatGPT. The selection criteria are as follows:

Length: We select bug reports whose description is considered to belong. We consider bug reports
whose description is longer thann words aslongbug reports. We getn by calculating the 75th
percentile of the length of description in the training set. The reason why we select long bug reports
is that long bug reports are usually not concise and contain long stack traces and code snippets.
These long bug reports would make it challenging forREPto retrieve the potential master bug
reports.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug Report Detection 1:7

Content: We select the bug reports whose description contains code snippets or URLs. We use
regular expressions to match and select these bug reports. Note that after keeping long bug reports,
we still have bug reports that contain code snippets or URLs. Some bug reports are very short and
with the majority of the content being code snippets or URLs. For developers, this information
is useful. However, for a DBRD method, this information can be hard to process. We select these
bug reports because not all the code snippets and URLs are useful forREPto retrieve the potential
master bug reports. We also do not directly remove code snippets or URLs. The reason is that we
want to keep the original structure of the bug reports for ChatGPT to understand the language
better. We then utilize ChatGPT to identify keywords from these bug reports.

3.2 Running ChatGPT with Prompt Template

After Stage 1, we run ChatGPT on the selected bug reports, i.e., either (1) thedescription is long
or (2) thedescription contains code snippets or URLs.

Prompt [40] is a set of instructions that can be used to probe LLMs to generate the target
outcome [17]. Prior studies have empirically shown that ChatGPT is sensitive to prompts. Thus,
for di�erent tasks, the prompts should be carefully designed to enable LLMs to demonstrate their
abilities.

We craft the prompt template used byCupid as shown below.

Prompt Template :
I have a bug r e p o r t which c o n t a i n s summary and d e s c r i p t i o n . I want you to s e l e c t

keywords from both p a r t s which keep the main meaning o f the bug r e p o r t . These
keywords would be used f o r d u p l i c a t e bug r e p o r t d e t e c t i o n . Output fo rmat :`

Summary : S e l e c t e d Keywords \ n D e s c r i p t i o n : S e l e c t e d Keywords` \ n \ n >>>

Summary : [Summary] \ n \ n >>> D e s c r i p t i o n :

[Description]

This template is designed for a single-turn dialogue. For each bug report, we open a new dialogue
with ChatGPT. After getting the response from ChatGPT, we replace the originalSummaryand
Description in the bug report with the returned identi�ed keywords ofSummaryandDescription .
We keep the remaining part of the bug report unchanged.

Regarding the design of the prompt template, our intuition is that we consider bug reporters
are likely to have more expertise and domain knowledge than ChatGPT. Therefore, the language
and terms they use when reporting bugs may be similar to each other, and this similarity can be
leveraged by DBRD methods. It would bene�t more not to replace the whole expression but rather
select and keep the essential information for DBRD methods to process. To support our intuition,
we also conduct experiments with other prompt templates and report the results in Section 5.

3.3 Retrieving Potential Master Bug Reports

Considering the superiority ofREPin the task of DBRD shown in a recent study [72], especially
on projects with a typical number of issues, we useREPas the DBRD approach inCupid. Here, we
brie�y introduce the REPapproach to make the paper self-contained. We refer the readers to the
original paper [59] for more details.

As shown in Formula 1,REPis a linear combination of seven features, includingtextual features
andcategorical features.

'�% ¹3•@º =
7Õ

8=1

F8 � 5 40CDA48 (1)

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:8 Zhang et al.

, where3 is the bug report in the repository' ,@, is the query (i.e., new bug report),F8 is the weight
of the8-th feature, and5 40CDA48 is the8-th feature. The �rst two features are bothtextual features,
and the rest �ve features arecategorical features. Figure 2 shows how to get each feature.

5 40CDA41¹3•@º = �" 25� 4GC¹3•@º //of unigrams

5 40CDA42¹3•@º = �" 25� 4GC¹3•@º //of bigrams

5 40CDA43¹3•@º =

(
1• if 3 � ?A>3= @� ?A>3
0• otherwise

5 40CDA44¹3•@º =

(
1• if 3”2><?= @”2><?
0• otherwise

5 40CDA45¹3•@º =

(
1• if 3”C~?4= @”C~?4
0• otherwise

5 40CDA46¹3•@º =
1

1̧ j 3”?A8>� @”?A8>j

5 40CDA47¹3•@º =
1

1̧ j 3”E4AB� @”E4ABj

(2)

The �rst two features regard the textual similarity between two bug reports over the �elds
summaryanddescription . These two textual features are calculated by�" 25� 4GCbetween bug
report 3 and query bug report@. �" 25� [52, 71] is an e�ective textual similarity function for
retrieving documents that have structures. The authors ofREPextend�" 25� by considering term
frequencies in queries and proposed�" 25� 4GC.

In 5 40CDA41, summaryanddescription are represented in uni-gram, while in5 40CDA42, summary
anddescription are represented in bi-gram. Thus, the input of�" 25� 4GCconsists of a bag of uni-
grams and bi-grams in both features. For5 40CDA43� 5, they are the categorical features ofproduct ,
component, andtype, respectively. If the corresponding �eld value from3 and@is the same, the
value of the feature is 1, otherwise, it is 0. For5 40CDA46� 7, they are the categorical features of
priority andversion , respectively. They are calculated by the reciprocal of the distance between
the corresponding �eld value from3 and@. Overall, theREPapproach contains 19 free parameters
with di�erent initial values. These parameters are tuned by gradient descent.

4 EXPERIMENTAL DESIGN

4.1 Research �estions

To understand whetherCupid performs better compared to existing state-of-the-art approaches
and whether each component ofCupid is useful, we answer the following two research questions
(RQs):
� RQ1:How e�ective isCupidcompared to the state-of-the-art approaches?
� RQ2: How e�ective are the components ofCupid? To answer this RQ, we conduct an ablation

study on the components ofCupid. This RQ is further divided into the following sub-RQs:
� RQ2.1: How e�ective is the prompt template?
� RQ2.2: How e�ective are the selection rules?
� RQ2.3: How e�ective is ChatGPT compared to other LLMs?

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug Report Detection 1:9

Table 1. Dataset statistics. Cupid here refers to the selected bug reports run by ChatGPT.

Dataset Total Bugs Train. Pairs Valid. Pairs
Test

Dup. Bugs Cupid

Spark 9,579 626 26 81 59
Hadoop 14,016 626 27 92 57
Kibana 17,016 724 28 184 114

4.2 Dataset

As mentioned in Section 1, we are concerned about boosting the performance of DBRD, especially
in the bug repositories with the typical number of issues. Therefore, the target datasets are those
that contain a typical number of issues. We employ three datasets, i.e., Spark, Hadoop, and Kibana
datasets, which are provided by a recent benchmarking study by Zhang et al. [72]. These datasets
contain around 10k issues each, which is considered a typical number of issues. These datasets are
recent issues, ranging from 2018 to 2022, which addressed theagebias, i.e., the model performs
di�erently on the recent data and old data. Spark and Hadoop are two popular open-source
distributed computing frameworks. They both use Jira as their issue tracking system. Kibana is a
visualization tool for Elasticsearch, and it uses GitHub as its issue tracking system. The statistics of
the datasets are shown in Table 1. The duplicate and non-duplicate pairs were sampled by Zhang
et al. [72]. Their ratio is 1:1. We obtained the data in the dataset provided by Zhang et al. In our
experiment, we �xed the number of training and validation pairs. The number of duplicate bug
reports in the test set is the bug reports we investigate. We report the performance of each approach
in terms of how they perform in retrieving the master bug reports.

4.3 Evaluation Metrics

Following prior works on DBRD [16,25,54,72], we only use Recall Rate@: (RR@:) as the evaluation
metric, where: represents the number of bug reports to be considered. Note that a few other
works have also adopted Mean Average Precision (MAP) in the DBRD literature. However, since
MAP considers all of the predicted positions, it is not suitable for our case, where only the top:
predictions matter. This is based on real-world practice, where developers are more likely to check
the top: predictions rather than all of the predictions. A survey on practitioners' expectations
towards fault localization also shows that around 98% of respondents are not willing to check the
predictions beyond the top-10 to �nd the faulty element [35].

Furthermore, as already discussed in early work [54], the two widely used metrics in information
retrieval, i.e., Precision@: and Recall@: , do not �t into how DBRD works. For each query bug
report, we only have a master bug report to look for (i.e., the relevant item is only 1). Consider: = 10,
a successful prediction would lead to Precision@10=1/10(10%), and Recall@10=1/1(100%); otherwise,
we will get Precision@10=0 and Recall@10=0. Therefore, we adopt RR@: as the evaluation metric.

Following the de�nition in prior works [53, 55, 59, 67], RR@: is de�ned as the percentage of
duplicate bug reports that are correctly assigned to the bucket they belong to when a model makes
a top-: prediction for each test bug report. In our experiment, RR@: will measure how well DBRD
techniques correctly link the duplicate bug reports to their master bug report. A higher RR@:
indicates that more bug reports in the test set are correctly linked to the bucket they belong to
when a model retrieves top-: prediction.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:10 Zhang et al.

'420;;'0C4=
#A420;;43

#C>C0;
(3)

Formula 3 shows how to calculate the Recall Rate.#A420;;43refers to the number of duplicate
bug reports whose bucket (master bug report) are in the suggested list (with a size of [1,2,...,:]).
#C>C0;refers to the number of duplicate bug reports investigated. Considering di�erent sizes of the
suggested list, i.e.,: , we can get RR@: . Following the benchmarking work by Zhang et al. [72], in
our case, we consider at most 10 predictions, i.e.,: = »1•2”””•10¼.

To facilitate understanding, we show an example to help explain how RR@: is calculated. Assume
that we have a test set with three duplicate bug reports, which we call� 1, � 2, and� 3, that we need
to match with their master bug reports. We adopt a DBRD technique (e.g.,REP) to suggest the top
10 potential master bug reports for each test bug report. IfREPmanages to identify� 1's master
bug report in the 3rd position of the suggested list, we'll consider it a hit at the 3rd prediction. Next,
� 2 is also correctly matched with its master bug report, which appears in the 5th position in the
suggested list. However,REPfails to retrieve� 3's master bug report in the top-10 predictions. This
means we have two successful and one failed detection. If we set: = 1 or : = 2, then the RR@: is
0, asREPdoes not rank the correct master bug report in the top two positions for any of the three
duplicate bug reports in the test set. On the other hand, if we set: = 3 or : = 4, then the RR@: is
1/3, asREPsuccessfully matches� 1's master bug report in the third position. Similarly, if we set
: = 5•6• ”””•10, then the RR@: is 2/3, asREPsuccessfully matches the master bug reports for� 1
and� 2.

4.4 Compared Techniques

In this work, we compareCupid with state-of-the-art DBRD techniques, which consider DBRD as
a ranking problem, i.e.,REP[59], Siamese Pair[25], andSABD[53].

REP[59] The details ofREPcan referred in Section 3.3.

Siamese Pair [25] is the �rst approach that leverages deep learning for DBRD. As its name
suggests,Siamese Pairutilizes Siamese variants of Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) trained on max-margin objective to distinguish similar bugs from
non-similar bugs.Siamese Pairadopts word embedding to represent the textual data as numerical
vectors. Then, it employs three di�erent types of neural networks to encodesummary, description ,
and categorical features according to their properties. Speci�cally,summaryis encoded by bi-LSTM,
description is encoded by a CNN, while the categorical information is encoded with a single-layer
neural network. When a new bug report comes,Siamese Pairencodes the bug report with the
trained model. It then calculates the cosine similarity between the new bug report and each bug
report in the master set and gives top k predictions.

SABD [53] is the latest deep learning-based DBRD approach. It consists of two sub-network
modules, where each module compares textual and categorical data from two bug reports. In the
textual sub-network, the soft-attention alignment mechanism [47] compares each word in a bug
report with a �xed-length representation of all words in the other bug report. By doing so,SABD
learns the joint representation of bug reports. In the categorical sub-network, each categorical
�eld relates to a lookup table that links the �eld value to a real-valued vector. The output vector
from each sub-module is concatenated and fed to a fully connected layer. Finally, a classi�er layer,
which is a logistic regression, produces the �nal prediction, i.e., whether the two bug reports are
duplicates.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug Report Detection 1:11

In RQ2.3, we also compare ChatGPT with other open-source LLMs. We select three LLMs, i.e.,
Vicuna-13B (i.e.,lmsys/vicuna-13b-v1.5 in Hugging Face library [68]), WizardLM-13B (i.e.,
WizardLM/WizardLM-13B-V1.2), andLlama 2-13B-Chat(i.e.,meta-llama/Llama-2-13b-chat-hf)
based on their performance in MMLU benchmark on the chatbot leaderboard1 in August 2023.
Due to the limit of the computing resources, we were only able to run the LLMs containing less or
equal to 13B parameters.

Vicuna-13B [21] is an open-source chatbot trained by �ne-tuningLlama on 70k user-shared con-
versations collected from ShareGPT.com.Vicuna-13Bwas trained on top of Stanford's Alpaca [63]
with three main improvements: (1) multi-turn conversations; (2) memory optimizations: it is worth
noting that the max context length ofVicuna-13Bwas expanded to 2,048; and (3) cost reduction.
We utilized the variant which �ne-tunedLlama 2.

WizardLM-13B [70] propose an automatic method namedEvol-Instructto mass-produce open-
domain instructions. Evol-Instruct starts with simple initial instructions and then re-writes them
step-by-step into more complex instructions.WizardLM �ne-tuned Llama with mixed generated
instruction data. The experimental results show that WizardLM achieves more than 90% capacity
of ChatGPT on 17 out of 29 skills. Similar toVicuna-13B, we utilized the variant ofWizardLM
which �ne-tuned Llama 2.

Llama 2-13B-Chat [65] is a �ned-tunes version ofLLama 2optimized for dialogue use cases. It
contains three variants, i.e., 7B, 13B, and 70B parameters.LLama 2follows most of the pertaining
setting and model architecture fromLLama 1[64]. The primary architectural di�erences contain
increased context length and grouped-query attention. Furthermore,Llama 2-13B-Chatundergoes
instruction tuning and RLHF. Note that althoughLlama 2-13B-Chat can take up to 4,096 tokens,
we set the max token length to 2,048 asVicuna-13BandWizardLM-13B.

4.5 ChatGPT Setup

Given that ChatGPT is still fast evolving, it has undergone several iterations [?]. In this study, we
worked on the GPT-3.5 version. To interact with ChatGPT, we used an open-sourced API [2] that
creates a chat window on the ChatGPT website. It saved us from the manual labor of opening a
chat window and copying the response back. Although there is an o�cial ChatGPT API available,
we were not able to use it without paying for it. Therefore, we chose to use the free version of
ChatGPT, which we believe to have a wider range of users compared to the paid one. As such, our
results would be more valuable as they are applicable to a wider range of users.

During the experiments, for each query bug report, we initialize a new conversation to avoid the
in�uence of the previous conversation on other bug reports. Since ChatGPT may generate di�erent
answers for the same query, we ran ChatGPT �ve times for each query and aggregated the results
(i.e., summing up the 5-round results) to obtain the �nal answer.

4.6 Implementation

To fairly compareCupid with the baselines, we �x the training pairs for all techniques. Since there
is randomness in the deep learning-based models, i.e.,Siamese PairandSABD, the reported results
were the average results after running them �ve times. The implementation details can be found in
our replication package [3].

1https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:12 Zhang et al.

Table 2. Recall Rate@: obtained on the Spark dataset. Thebest performance in terms of RR@10 is high-
lighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.346 0.383 0.457 0.481 0.481 0.556
Siamese Pair 0.037 0.049 0.059 0.064 0.074 0.121
SABD 0.202 0.247 0.281 0.294 0.304 0.331

Cupid 0.346 0.395 0.432 0.469 0.481 0.593

Table 3. Recall Rate@: obtained on the Hadoop dataset. Thebest performance in terms of RR@10 is
highlighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.402 0.489 0.522 0.554 0.576 0.609
Siamese Pair 0.033 0.046 0.057 0.063 0.076 0.093
SABD 0.215 0.267 0.293 0.304 0.324 0.411

Cupid 0.391 0.511 0.565 0.576 0.609 0.652

Table 4. Recall Rate@: obtained on the Kibana dataset. Thebest performance in terms of RR@10 is
highlighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.364 0.440 0.527 0.560 0.587 0.620
Siamese Pair 0.020 0.036 0.050 0.063 0.076 0.092
SABD 0.293 0.382 0.428 0.467 0.489 0.555

Cupid 0.408 0.522 0.571 0.603 0.62 0.674

5 RESULTS

5.1 RQ1: Comparing with baselines

Table 2, 3, and 4 show the results ofCupid and the baselines on the Spark, Hadoop, and Kibana
datasets. Overall,Cupid consistently improves the DBRD performance in terms of RR@10 on all
three datasets, yielding an improvement of 6.7% (Spark) to 8.7% (Kibana) over the prior state-of-the-
art approachREP. This improvement is obtained by successfully utilizing the language generation
ability of ChatGPT to transform the bug reports into a format where only essential information
is kept. In comparison with the best-performing deep learning-based approach, i.e.,SABD, we
observe an improvement of up to 79.2% on the Spark dataset. In the low-volume datasets,SABD
andSiamese Pairlose to non-deep learning approaches, i.e.,REPandCupid.

Comparing the performance ofSiamese PairandSABDin all three datasets, we can �nd that
Siamese Pairsu�ers more from the challenge of limited training data.Siamese Pairperforms less
than 50% ofSABDin all the three datasets in terms of RR@10. We argue that when there is a lack
of adequate training data, it is less meaningful to compare di�erent deep learning-based models.

Dataset-wise, all approaches perform relatively worse on the Spark dataset and relatively better
on the Kibana dataset. The observation aligns with the �ndings from prior studies [53]: the same

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug Report Detection 1:13

(a) on Spark dataset (b) on Hadoop dataset

(c) on Kibana dataset (d) All the three datasets

Fig. 3. Successful prediction Venn diagram

DBRD approach, i.e.,SABD, achieves a variety of RR@10 on di�erent datasets examined, ranging
from 0.55 (on OpenO�ce dataset) to 0.7 (on Netbeans dataset). It shows that the performance of a
DBRD technique also depends on the dataset characteristics. This observation inspires us that it
would be bene�cial for each dataset if we tune the prompt template based on the characteristics of
each dataset. We leave this for future work to boost the performance further.

Figure 3 shows the Venn diagrams for successful predictions made by the prior state-of-the-
art method, i.e.,REP, andCupid on each dataset and all datasets combined. We see thatCupid
successfully retrieves more master bug reports compared toREP. On the Hadoop and Kibana
datasets, onlyCupid successfully retrieved more master bug reports, whileREPdid not successfully
retrieve more.

To demonstrate the ability ofCupid, we show an example, i.e., the query bug report isHADOOP-17091[7]
whereREPfailed to predict the correct master bug report in the top-10 positions, whileCupid
managed to. Figure 4 shows thesummaryanddescription of this issue. We can see that there
is no natural language in the description, containing only error messages. Thus,REPconsidered
the most possible master bug report to beHADOOP-16648, which also contains a large portion
of the error messages. We checked the single-run result by ChatGPT. Thanks to the language
understanding and generation ability of ChatGPT,Cupid identi�ed the keywords:Javadoc, HTML
version, HTML4, HTML5, warning, comments, valid, GeneratedMessageV3, package, not
found, error from thedescription of HADOOP-17091. The generated shorterdescription on
the query bug report has several words overlap with thedescription of the real master bug report
(HADOOP-16862). It enablesCupid to successfully rank at the �rst position. Since the real master
bug report has a long error message as thedescription , REPfailed to retrieve it. This example

J. ACM, Vol. 37, No. 4, Article 1. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Models
	2.2 Duplicate Bug Report and its Detection

	3 Approach
	3.1 Applying Selection Rules
	3.2 Running ChatGPT with Prompt Template
	3.3 Retrieving Potential Master Bug Reports

	4 Experimental Design
	4.1 Research Questions
	4.2 Dataset
	4.3 Evaluation Metrics
	4.4 Compared Techniques
	4.5 ChatGPT Setup
	4.6 Implementation

	5 Results
	5.1 RQ1: Comparing with baselines
	5.2 RQ2: Ablation Study

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	References

