
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ChatBR: Automated Assessment and Improvement of Bug Report
Quality Using ChatGPT

Lili Bo

lilibo@yzu.edu.com

1
Yangzhou University

Yangzhou, China

2
Yunnan Key Laboratory of Software

Engineering

Kunming, China

Wangjie Ji

MZ120220952@stu.yzu.edu.cn

Yangzhou University

Yangzhou, China

Xiaobing Sun
∗

xbsun@yzu.edu.cn

Yangzhou University

Yangzhou, China

Ting Zhang

tingzhang.2019@phdcs.smu.edu.sg

Singapore Management University

Singapore, Singapore

Xiaoxue Wu

xiaoxuewu@yzu.edu.cn

Yangzhou University

Yangzhou, China

Ying Wei

008639@yzu.edu.cn

Yangzhou University

Yangzhou, China

ABSTRACT
Bug reports, containing crucial information such as the Observed

Behavior (OB), the Expected Behavior (EB), and the Steps to Re-

produce (S2R), can help developers localize and fix bugs efficiently.

However, due to the increasing complexity of some bugs and the

limited experience of some reporters, many bug reports miss this

crucial information. Although machine learning (ML)-based and

information retrieval (IR)-based approaches have been proposed to

detect and supplement the missing information in bug reports, the

performance of these approaches depends heavily on the size and

quality of bug report datasets.

In this paper, we present ChatBR, an approach for automated

assessment and improvement of bug report quality using ChatGPT.

First, we fine-tune a BERT model using manually annotated bug

reports to create a sentence-level multi-label classifier to assess the

quality of bug reports by detecting the presence of OB, EB, and

S2R. Second, we use ChatGPT in a zero-shot setup to generate the

missing information (OB, EB, and S2R) to improve the quality of

bug reports. Finally, the output of ChatGPT is fed back into the

classifier for verification until ChatGPT generates the missing in-

formation. Experimental results demonstrate ChatBR’s superiority

in both detecting and generating missing information in bug re-

ports. For detection, ChatBR surpasses the state-of-the-art method,

improving precision by 25.38% to 29.20%. In generating missing

information, ChatBR achieves an average semantic similarity of

77.62% between generated and original content across six diverse

projects. Furthermore, ChatBR can generate more than 99.9% of

∗
Xiaobing Sun is the Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695518

high-quality bug reports (i.e., bug reports that are full of OB, EB,

and S2R) within five ChatGPT runs.

CCS CONCEPTS
• Software and its engineering →Maintaining software.

KEYWORDS
Bug Report, ChatGPT, Pre-trained Models, Large Language Models

ACM Reference Format:
Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei.

2024. ChatBR: Automated Assessment and Improvement of Bug Report Qual-

ity Using ChatGPT. In 39th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3691620.

3695518

1 INTRODUCTION
Bug reports are vital for developers during software development

as they document unexpected software behaviors encountered by

users [53]. OB (Observed Behavior), EB (Expected Behavior), and

S2R (Steps to Reproduce) offer important information that is highly

useful for developers to trigger and fix bugs. Specifically, EB de-

scribes the correct or intended functionality of the software system.

OB details the observed performance or functionality that deviates

from the EB. S2R outlines the specific actions required to consis-

tently recreate the reported issue. Missing the above information

may waste the time of developers in understanding and reasoning

about bugs for correct fixes.

Many approaches have been proposed to assess and improve the

quality of bug reports [4, 13, 20, 21]. Some approaches typically de-

pend on heuristic rules and expert knowledge for detecting crucial

information in bug reports, but they are difficult to extend with

the increasing rules and software scale. Zhang et al. [45] present

an information retrieval (IR)-based approach to detect the missing

information and use historically similar bug reports to enrich them.

Unfortunately, historically similar bug reports are not always avail-

able. Moreover, directly adding sentences extracted from similar

bug reports can cause semantic incoherence. In addition, machine

1

https://doi.org/10.1145/3691620.3695518
https://doi.org/10.1145/3691620.3695518
https://doi.org/10.1145/3691620.3695518

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

learning (ML)-based approaches are proposed and have shown their

good performance in assessing bug reports. For example, Song et al.

[36] develop multiple binary classification models to detect missing

OB, EB, and S2R information in bug reports. However, ML-based

approaches for assessing bug reports face limitations due to two pri-

mary factors. First, these approaches struggle to effectively capture

the deep semantics of natural language context. Second, their per-

formance heavily depends on large-scale, high-quality bug report

datasets for training, which are not always available.

In this paper, we propose a novel approach (ChatBR) based on

ChatGPT to alleviate the above limitations.

To improve the accuracy of assessing bug reports, we adopt

the pre-trained model that relies on the attention mechanism to

capture the deep semantics of natural language context effectively.

Only a small number of bug reports are needed to fine-tune the

pre-trained model, which can save much time in collecting high-

quality bug reports. Furthermore, the generated bug reports are

iteratively returned to the detector to check for missing information,

improving the accuracy of assessing bug reports and the quality of

final bug reports.

To ensure the semantic coherence of the improved bug report

description, we use ChatGPT, a large language model (LLM), to

generate a bug report context that is easy to read. First, ChatGPT

has a natural ability to generate a context that is semantically coher-

ent. Second, ChatGPT contains rich bug-related knowledge, which

alleviates the dependence on similar bug reports. Considering the re-

source limitation of using ChatGPT, we utilize prompt engineering

for guiding ChatGPT to output accurate bug reports. Furthermore,

only incomplete bug reports (i.e., the bug reports missing OB, EB,

or S2R) are input to ChatGPT to minimize the number of ChatGPT

runs.

In summary, ChatBR (Automated assessment and improvement

of Bug Report quality using ChatGPT) is a two-step approach. It

consists of a detector and a generator. The detector is a fine-tuned,

pre-trainedmodel used to detect OB, EB, or S2R in bug reports. Chat-

GPT serves as a generator for missing information in bug reports.

The detector iteratively verifies ChatGPT’s output, ensuring only

complete bug reports (containing OB, EB, and S2R simultaneously)

are presented to users. We trained and evaluated the detector using

Song et al.’s dataset [36]. The generator’s performance was assessed

on bug reports from six open-source projects. Results demonstrate

that ChatGPT-generated information achieves 73.17% to 85.05%

semantic similarity with original information across these projects.

Notably, ChatGPT successfully generates missing information for

99.9% of bug reports within five runs.

The main contributions of this paper can be summarised as

follows:

• We propose a two-step framework consisting of a detector (com-

bining data augmentation and a fine-tuned pre-trained model)

and a generator (using ChatGPT) to assess and improve the qual-

ity of bug reports by automatically supplementing the missing

OE, EB, and S2R.

• Experimental results demonstrate ChatBR’s superiority in both

detecting and generating missing information in bug reports.

For detection, ChatBR surpasses the state-of-the-art approach,

improving precision by 25.38% to 29.20%. In generating missing

Listing 1: Excerpt from example bug report in AspectJ
{

"ID" : "384398",

"Title" : "Type Mismatch error when using inner classes

contained in generic types within ITDs",

"Description" : " Please see attached example project .

I get the following (strange) compiler error: Type mismatch:

cannot convert from A<T>.InnerA<> to A.InnerA Aspect.aj

/AspectJInnerclassInGenericTypeBug/src/de/example line 12. "

}

Legend: OB EB S2R

Listing 2: Excerpt from refactored example bug report
{

"ID" : "384398",

"Title" : "Type Mismatch error when using inner classes

contained in generic types within ITDs",

"Description" : " Please see attached example project .",

"OB" : " I get the following (strange) compiler error : Type

mismatch: cannot convert from A<T>.InnerA<> to A.InnerA

Aspect.aj /AspectJInnerclassInGenericTypeBug/src /de/example

line 12.",

"EB" : "",

"S2R" : ""

}

information, ChatBR achieves an average semantic similarity of

77.62% between generated and original content across six diverse

projects.

• Our source code and datasets are publicly available to facilitate

further research.
1

The paper is structured as follows. Section 2 illustrates our ap-

proach through a motivating example. Section 3 describes ChatBR

in detail. Section 4 presents the experimental design. Section 5

shows the experimental results and conducts a deep analysis of

the results. We discuss threats to validity in Section 6. Section 7

summarizes the related work. Finally, Section 8 concludes our work.

2 MOTIVATING EXAMPLE
In this section, we use a motivating example to illustrate our ap-

proach.

Listing 1 presents an excerpt from a sample bug report in the

AspectJ project [2]. The structural elements of the report are color-

coded for clarity. To address the issues outlined in this report, de-

velopers must carefully read and comprehend the entire document.

Listing 2 shows an excerpt from the refactored example bug

report in Listing 1. We can see that the bug report in Listing 1 only

describes the OB information (i.e., "Type Mismatch error"), while
EB and S2R are missing. This is determined by the detector, a pre-

trained model fine-tuned with the bug report dataset after data

augmentation.

1
https://github.com/jiwangjie/ChatBR

2

https://github.com/jiwangjie/ChatBR

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ChatBR: Automated Assessment and Improvement of Bug Report Quality Using ChatGPT ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Listing 3: Excerpt from improved example bug report
{

"ID" : "384398",

"Title" : "Type Mismatch error when using inner classes

contained in generic types within ITDs",

"Description" : " Please see attached example project .",

"OB" : "When attempting to compile the code, a type mismatch

error occurs with the message: 'Type mismatch: cannot convert

from A<T>.InnerA<> to A.InnerA Aspect.aj /

AspectJInnerclassInGenericTypeBug/src /de/example line 12.'",

"EB" : "The compiler should not produce a type mismatch error

when dealing with inner classes contained in generic types

within ITDs .",

"S2R" : "1. Compile the provided example project . 2. inspect

the compiler error generated when using inner classes

contained in generic types within ITDs ."

}

Existing work generates the missing information by adding his-

torically similar bug report information directly to the current bug

report [45]. This can disrupt the semantic coherence. LLMs are

transformer-based neural networks that can predict the next token

based on the preceding context [35]. They can perform the assigned

tasks with prompts. Leveraging the vast capabilities of LLMs and

prompt engineering, we design prompt templates for ChatGPT to

generate the missing information.

Listing 3 showcases an excerpt from an enhanced bug report.

It demonstrates how ChatGPT generates the EB and S2R for the

original bug report shown in Listing 1. Upon manual verification,

the generated EB and S2R prove to be accurate and satisfactory. In

this instance, ChatGPT run three times to produce the missing EB

and S2R elements.

3 APPROACH
3.1 Overview
Figure 1 shows the overview of ChatBR. It consists of three phases:

the training phase, the detection phase, and the generation phase.

In the training phase, data augmentation techniques are adopted to

alleviate the problem of data imbalance, thereby training a detec-

tor, i.e., the pre-trained BERT model [16]. In the detection phase,

the detector is used to detect the missing elements (i.e., OB, EB,

and S2R) in bug reports. In the generation phase, the prompt tem-

plates are designed to guide ChatGPT in generating the missing

information. In addition, the improved bug reports are returned to

the detector to check whether ChatGPT successfully generates the

missing information.

3.2 Training Phase
In this phase, we aim to construct a detector by training a multi-

label classifier. It consists of three steps: data preprocessing, data

augmentation, and fine-tuning a pre-trained BERT model.

The first step is data preprocessing. The initial bug reports are

from the publicly available dataset shared by Song et al. [36]. We

extract the ID, title, and description from each bug report, removing

non-textual elements (e.g., images, URLs) and code information (e.g.,

code blocks, stack traces) as per Song et al.’s method [36]. We then

apply the sentence tokenizer from the Natural Language Toolkit [5]

to split bug report descriptions into individual sentences. To im-

prove generalization, we remove duplicate sentences and those with

fewer than 5 characters, considering the latter uninformative. Given

BERT’s 512-token input limit, we split longer sentences accordingly.

The resulting dataset comprises labeled bug report sentences, each

with a triple indicating the presence (1) or absence (0) of OB, EB, and

S2R, respectively. This process reveals a significant data imbalance

issue (as shown in Table 1).

To alleviate the data imbalance problem, data augmentation is

conducted in the second step. Since semantic changes between the

augmented text and the original text may result in label inconsis-

tencies, we opt for token-level data augmentation [40]. Typically,

token-level data augmentation in natural language can be catego-

rized into four types of operations [42]:

• Synonym Replacement: Select a random word from the text

and substitute it with its synonym from a predefined dictionary.

• Random Insertion: Select a random word from the text and

insert its synonym from a predefined dictionary at a random

position in the text.

• Random Swap: Exchange the positions of two randomly chosen

words within the text.

• Random Deletion: Remove a word selected at random from

the text.

To avoid altering the original semantics by inadvertently delet-

ing key tokens in sentences, we only conduct the former three

operations: synonym replacement, random insertion, and random

swap. To enhance the generalization capability of the augmented

data samples, we modify two key operations: synonym replacement

and random insertion. Specifically, we randomly select 0 to n tokens
to replace or insert, where 𝑛 = 𝜆 × #tokens. Ciborowska et al. [15]

show that the value 𝜆 set to 0.1 produces the best results. In addi-

tion, we use the WordNet toolkit [34] to obtain synonyms. After

the second step, we obtain an augmented dataset, which consists

of sentences of bug reports.

The third step is fine-tuning a pre-trained BERT model with

the augmented dataset to construct a detector. Given that a sin-

gle sentence may contain multiple types of information (OB, EB,

and S2R), we treat the detection of missing information in bug re-

ports as a multi-label classification task. Recent pre-trained models

have demonstrated outstanding performance in the natural lan-

guage processing (NLP) domain, particularly in natural language

understanding and classification tasks, surpassing previous ma-

chine learning and deep learning techniques. Since bug reports are

text-based descriptions written by developers, we regard them as

natural language texts. Thus, we fine-tune BERT, a widely recog-

nized pre-trained model, on the augmented dataset.

3.3 Detection Phase
In this phase, the constructed detector is used to detect whether

bug reports miss critical information, i.e., OB, EB, and S2R. In our

work, the bug reports can be divided into complete bug reports and

incomplete bug reports. A complete bug report contains OB, EB, and

S2R in the sentences of the bug report. An incomplete bug report is

one that misses OB, EB, or S2R in the sentences of the bug report. In

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

1) Training Phase

2) Detection Phase

Sentence 1

...

Sentence 2

Sentence n

3) Generation Phase

Data Augmentation

Insert Replace Swap
Dataset Preprocess Dataset*

Bug Report Detector

Detector

Complete

Incomplete

ChatGPTPrompt Template

Figure 1: Overview of ChatBR

order to save the computational cost of ChatGPT in the generation

phase, it can only run on incomplete bug reports. Therefore, it is

necessary to detect missing information accurately.

For each incoming bug report, we apply the same preprocessing

steps used in the training phase to extract individual sentences. The

detector then predicts a label for each sentence. This label is a triple,

representing the presence (1) or absence (0) of OB, EB, and S2R,

as a sentence may contain multiple elements. We then aggregate

these labels across all sentences in the bug report. If any of the

three elements (OB, EB, or S2R) is missing from the entire report

(i.e., no sentence contains that element), the report is considered

incomplete. Only incomplete bug reports proceed to the next phase:

generation.

3.4 Generation Phase
3.4.1 Designing Prompt Templates. Prompt [30] is a set of instruc-

tions that guides LLMs to produce a specific target result [3]. Dif-

ferent prompts can lead to various performances on the same task

[27, 49]. Therefore, it is crucial to design precise prompts. In our

work, we use a single-round dialogue interaction to design prompts

and adopt the following prompting strategies to create a prompt

template suitable for ChatBR: (1) providing important task-related

details or context as much as possible; (2) assigning LLMs a speci-

fied role for our task; (3) using separators in the prompt to indicate

different parts of the input [10, 30]; (4) the output of LLMs should

conform to a common JSON format for better analysis; and (5)

limited by the length of input tokens of LLMs, the prompt should

express the task both accurately and concisely.

Our experimental prompt template, shown in Listing 4, is de-

signed based on the aforementioned prompting strategies. The task

involves generating missing information (OB, EB, and S2R) for in-

complete bug reports, with the LLM playing the role of a software

engineer. We provide definitions for OB, EB, and S2R as expert

knowledge. The model’s task is to infer appropriate details from the

given bug report’s context and supplement it with clear, complete

OB/EB/S2R sentences. We specify that the output should conform

to a JSON format, including fields for ID, Title, Description, OB, EB,
and S2R. The input (incomplete bug report) is similarly reorganized

into this JSON format. ID and Title remain unchanged. Using the

sentence labels obtained during the detection phase, we populate

the corresponding fields. To maintain semantic consistency, sen-

tences retain their original order. Sentences with multiple elements

appear in multiple fields, while those without OB, EB, or S2R are

placed in the Description field to provide context for generating

missing information.

3.4.2 Running ChatGPTwith Prompts. Based on the designed prompt

template, ChatGPT can run efficiently to generate improved bug

reports containing missing information. In order to prevent be-

ing affected by the generated results, a new ChatGPT dialogue

is reopened for each bug report. After receiving a response from

ChatGPT, we first check whether the generated content conforms

to the required JSON format. If the responses do not satisfy the

JSON format requirement, it is necessary to run ChatGPT again for

generation. Otherwise, they are returned to the detector to check

whether ChatGPT generated the missing information. This is an

iterative process until the detector detects all the OB, EB, and S2R.

4 EXPERIMENTAL DESIGN
4.1 Research Questions
In essence, ChatBR consists of a detector and a generator. To eval-

uate the performance of ChatBR, we design the following five re-

search questions:

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ChatBR: Automated Assessment and Improvement of Bug Report Quality Using ChatGPT ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Listing 4: Final Prompt Template
Prompt Template:
− Your role is a senior software engineer , you are very good at

analyzing and writing bug reports . You should provide clear

and informative sentences for the following categories :

− Observed Behavior(OB): This section should describe the relevant

software behavior , actions , output , or results . Avoid vague

sentences like "the system does not work."

− Expected Behavior(EB): This part should articulate what the

software should or is expected to do, using phrases like "

should ...", "expect ...", or "hope ...". Avoid suggestions or

recommendations for bug resolution .

− Steps to Reproduce(S2R): Include user actions or operations that

can potentially lead to reproducing the issue . Use phrases

like "to reproduce ," " steps to reproduce ," or " follow these

steps ."

− The bug report may lack sufficient details in the OB, EB, and

S2R sections . Your task is to infer the appropriate details

based on the context and supplement the bug report to ensure

it contains clear and complete OB/EB/S2R sentences and

improve the wording of these sentences for clarity where

possible .

− Respond in JSON format as follows :

{" id ": "", " title ": "", " description ": "", "OB": "", "EB": "", "

S2R": ""}

<BUG REPORT>...</BUG REPORT>

• RQ1: How effective is ChatBR’s detector in identifying missing
information?
We compare ChatBR’s detector with BEE[36], the most relevant

state-of-the-art approach. Both use the same initial dataset and

incorporate data augmentation. While BEE employs three bi-

nary classification SVM models [23], ChatBR takes a different

approach. This question aims to evaluate ChatBR’s performance

in detecting missing information in bug reports relative to BEE.

• RQ2: How effective is ChatBR’s generator in generating missing
information?
Given that many existing bug reports lack crucial information

(OB, EB, and S2R), we assess ChatBR’s ability to improve incom-

plete reports. This question explores the generator’s effectiveness

in producing missing details. Two sub-questions further investi-

gate influencing factors:

– RQ2.1: How does the number of missing elements affect
ChatBR’s effectiveness?

– RQ2.2: How does the type of missing elements affect ChatBR’s
effectiveness?

• RQ3: How efficient is ChatBR in generating missing information?
Efficiency is crucial for practical adoption. This question eval-

uates ChatBR’s practicality by examining the number of times

ChatGPT needs to be run. Two sub-questions explore influencing

factors:

– RQ3.1: How does the number of missing elements affect
ChatBR’s efficiency?

– RQ3.2: How does the type of missing elements affect ChatBR’s
efficiency?

• RQ4: How do different prompts affect the generation results?

We investigate the impact of prompt design on ChatGPT’s output.

Starting with a basic template, we refine it by assigning ChatGPT

the role of a senior software engineer skilled in bug report writing.

Finally, we incorporate the specific requirement for OB, EB, and

S2R based on ChatGPT best practices [11].

• RQ5: How effective is ChatGPT compared to other LLMs?
We compare ChatGPT with two open-source LLMs: Vicuna-7B

[14] and Llama2-7B [39]. Llama2 is one of the most popular

LLMs and has not been specifically fine-tuned, which to some ex-

tent represents the foundational capabilities of the open-source

model; Vicuna-7B is a fine-tuned model that has three improve-

ments: (1) multi-turn conversations, (2) memory optimization, (3)

cost reduction. Due to resource constraints, we limit our compar-

ison to models with 7B or fewer parameters. All models undergo

5-round experiments using the same final prompt template.

4.2 Dataset

Table 1: Dataset of training and evaluating the detector

Label Preproccess After Data AugmentationOB EB S2R Before After
0 0 0 87,398 51,559 51,559

1 0 0 7,738 7,642 42,487

0 0 1 5,001 4,897 33,988

0 1 0 1,502 1,487 33,525

1 0 1 1,483 1,481 35,269

1 1 0 239 239 32,191

1 1 1 46 46 15,547

0 1 1 25 25 7,681

Total 103,432 67,376 252,247

4.2.1 Training and evaluation dataset of the detector. Table 1 presents
the dataset used for training and evaluating the detector. The first

three columns show the labels representing the types of bug report

sentences. Columns 4 and 5 display the number of bug report sen-

tences before and after data preprocessing, while column 6 shows

the number after data augmentation. We utilized the publicly avail-

able dataset from Song et al. [36], encompassing 35 real-world

projects, over 5,000 bug reports, and 116,000 bug report sentences

(including titles). After preprocessing, the number of bug report

sentences decreased to 67,376. Following data augmentation, this

number increased to 252,247. We randomly selected 70% of the

data for training and the remaining 30% for testing. As evident

from Table 1, the degree of data augmentation varies for different

types of bug report sentences. For instance, no augmentation was

performed on sentences lacking OB, EB, and S2R, although they

constitute the majority of the dataset. Conversely, multiple aug-

mentation operations were conducted on sentences containing OB,

EB, and S2R to increase their proportion in the dataset.

4.2.2 Evaluation dataset of the generator. To evaluate the perfor-

mance of the generator in ChatBR, we constructed a new dataset

distinct from the one used for training the detector. Figure 2 illus-

trates the distribution of bug reports in this new dataset. It encom-

passes six widely-used projects: AspectJ, Birt, Eclipse, JDT, SWT,

and Tomcat [7, 8, 51]. We randomly selected 600 bug reports from

each project, totaling 3,600 bug reports, which were then input

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

into the detector from the training phase. The detector identified

193 complete bug reports containing OB, EB, and S2R information.

Due to ChatGPT’s input length limitation, we removed bug reports

exceeding 4,096 characters, resulting in 171 complete bug reports.

Figure 2: Distribution of bug reports for evaluating the gen-
erator

Using these 171 final bug reports, we synthesized incomplete

reports by manually deleting OB, EB, and S2R information. This

deletion strategy involved removing one or two pieces of informa-

tion from OB, EB, and S2R, resulting in six variants of incomplete

bug reports for each complete one. Considering the cost of running

ChatGPT (171 × 6 × 5 × 5 = 25, 650) 2, we randomly selected half of

the final bug reports from each project. Ultimately, 87 bug reports

were used for evaluating the generator.

4.3 Evaluation Metrics
We employ four metrics to assess the effectiveness of ChatBR’s

detector: precision, accuracy, recall, and F1-score. To evaluate the

generator’s effectiveness, we utilize semantic similarity [24, 43],

specifically cosine similarity. In our experiment, we use Word2Vec

[32] to convert words into vectors. Following the prior work [29],

we average the word vectors in a sentence to obtain the sentence

embedding.

• Accuracy evaluates the proportion of correctly labeled sentences.
It is calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁
(1)

• Recall measures the proportion of actual positive cases that

were correctly identified. It is calculated as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

2
The number 171, 6, 5, 5 in this equation represent the number of bug reports, the

number of variants for each bug report, the maximum number of runs per bug report,

and 5-round experiments. Thus, the result 25,650 is the maximum number of ChatGPT

runs in our experiments.

• Precision represents the fraction of true elements among the

detected ones. It is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

• F1-Score is the harmonic mean of Recall and Precision, calcu-

lated as:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(
Precision×Recall
Precision+Recall

)
(4)

• Cosine Similarity measures the semantic similarity between

the sentence with generatedmissing information and the original

sentence. It is calculated using:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵) = 𝐴 · 𝐵
∥𝐴∥∥𝐵∥ (5)

𝐴 · 𝐵 is the dot product of the two vectors. ∥𝐴∥ and ∥𝐵∥ is the
Euclidean norm of the vector.

4.4 Experimental Setup
We set the following parameters to fine-tune the BERT model:

hidden size is 768, and the number of attention layers is 12. All pa-

rameters are optimized using Adam, and the initial learning rate is

set to 0.001. During training, the batch size is set to 64, and the max-

imum length of the encoder is set to 512. To optimize cost efficiency

when using ChatGPT, we implemented a limit on the maximum

number of runs per bug report. Specifically, for each incomplete bug

report, we allowed up to five separate runs of ChatGPT to generate

the desired output. Each run represents a new dialogue initiated

with ChatGPT, providing a fresh attempt to produce the required

information. To ensure fairness and reliability in our results, we

repeated this entire process for five rounds across all experiments.

All experiments are performed on a 32G RAM Intel(R) Xeon(R)

Gold 5318Y CPU@2.10GHz and an NVIDIA A30 GPU. Besides, we

use the OpenAI API to interact with GPT-3.5-turbo in our experi-

ments.

5 EXPERIMENTAL RESULTS
5.1 RQ1: How effective is ChatBR’s detector in

identifying missing information?

Table 2: Performance ofChatBR andBEE in detectingmissing
information of bug reports

Approach Element Precision Accuracy Recall F1-Score

BEE

OB 0.7260 0.9470 0.8790 0.7956

EB 0.7000 0.9920 0.9840 0.8163

S2R 0.7200 0.9740 0.9080 0.8049

ChatBR (without DA)

OB 0.7400 0.9344 0.7201 0.7300

EB 0.7346 0.9862 0.7022 0.7180

S2R 0.7886 0.9564 0.6986 0.7409

ChatBR

OB 0.9798 0.9835 0.9873 0.9835

EB 0.9920 0.9966 0.9984 0.9952

S2R 0.9817 0.9900 0.9914 0.9982

Table 2 illustrates the performance of ChatBR and BEE in detect-

ing missing information in bug reports. The table is divided into

three sections, presenting the performance of BEE, ChatBR without

data augmentation, and ChatBR with data augmentation.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ChatBR: Automated Assessment and Improvement of Bug Report Quality Using ChatGPT ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Overall, ChatBR demonstrates superior performance across all

metrics—precision, accuracy, recall, and F1-score—compared to BEE

for different types of missing elements. Notably, ChatBR improves

precision by 25.38%, 29.20%, and 26.17% for OB, EB, and S2R infor-

mation, respectively. Remarkably, even without data augmentation,

ChatBR’s performance is competitive with BEE’s optimal results.

This significant improvement can be attributed to the choice

of the pre-trained BERT model. Previous research has shown that

transformer-based pre-trained models excel at capturing intrin-

sic semantic relationships between texts [1, 16]. In contrast, the

approach of converting a multi-label classification task into mul-

tiple binary classification tasks, as employed by BEE, potentially

overlooks the inherent relationships between internal features of

multi-label samples [44].

Furthermore, the superior performance of ChatBR with data aug-

mentation, compared to both its non-augmented version and BEE

(which uses a different data augmentation strategy), underscores

the effectiveness of ChatBR’s data augmentation operations. Our

augmentation techniques are more targeted and domain-specific

than those used in BEE.

In conclusion, the combination of fine-tuning BERT on a bal-

anced dataset achieved through our targeted data augmentation

significantly enhances ChatBR’s effectiveness in detecting missing

information in bug reports.

5.2 RQ2: How effective is ChatBR’s generator in
generating missing information?

5.2.1 RQ2.1 How does the number ofmissing elements affect ChatBR’s
effectiveness? Figure 3 illustrates the semantic similarity between

ChatGPT-generated information and original information for bug

reports with varying numbers of missing elements. Red triangles

represent results for bug reports missing one element, while blue

triangles indicate those missing two elements. For example, in the

OB line, the red point shows the semantic similarity score between

generated and original OB information for bug reports missing only

OB. The blue point represents the average semantic similarity score

for bug reports missing two elements, including those lacking both

OB and EB, and those missing both OB and S2R.

Overall, ChatGPT generates missing information with high se-

mantic similarity scores (0.7841 on average) to the original bug

reports when one element is missing. There are slight differences

among the six software projects. However, missing one element

consistently results in higher semantic similarity between gener-

ated and original bug reports compared to missing two elements

(i.e., any two of OB, EB, and S2R), as evidenced by the red trian-

gles appearing outside the blue ones. This suggests that missing

more elements may significantly affect ChatGPT’s effectiveness.

For instance, in the SWT project, compared to bug reports missing

only one element, those missing any two elements show decreased

semantic similarity scores from 0.8040, 0.8025, and 0.7725 to 0.7942,

0.7865, and 0.7611, respectively.

5.2.2 RQ2.2 How does the type of missing elements affect ChatBR’s
effectiveness? Table 3 presents the semantic similarity between

ChatGPT-generated elements and original elements for bug reports

with varying types of missing elements across six software projects.

The first column lists various scenarios for generating OB, EB, and

Figure 3: Semantic similarity between ChatGPT-generated
information and original information for bug reports with
varying numbers of missing elements

S2R using ChatGPT. For instance, the "OB" row shows the semantic

similarity between the generated and original OB when only OB is

missing. The "OB_EB(OB)" row indicates the semantic similarity

between the generated and original OB when both OB and EB are

missing.

Table 3: Semantic similarity between ChatGPT-generated
missing elements and original elements for bug reports with
varying types of missing elements

Scenario AspectJ Birt Eclipse JDT SWT Tomcat
OB 0.7661 0.7822 0.7938 0.7952 0.8040 0.8061

OB_EB(OB) 0.7535 0.7772 0.7872 0.7842 0.7950 0.7964

OB_S2R(OB) 0.7541 0.7729 0.7801 0.7805 0.7835 0.7850

OB(avg) 0.7579 0.7774 0.7870 0.7867 0.7942 0.7958

EB 0.8207 0.7844 0.7938 0.7992 0.8025 0.8019

OB_EB(EB) 0.8149 0.7714 0.7837 0.7817 0.7833 0.7815

EB_S2R(EB) 0.8110 0.7718 0.7813 0.7872 0.7896 0.7899

EB(avg) 0.8155 0.7758 0.7863 0.7894 0.7918 0.7911

S2R 0.7530 0.7393 0.7642 0.7629 0.7725 0.7720

OB_S2R(S2R) 0.7429 0.7336 0.7500 0.7510 0.7574 0.7574

EB_S2R(S2R) 0.7440 0.7276 0.7547 0.7563 0.7649 0.7654

S2R(avg) 0.7466 0.7335 0.7563 0.7568 0.7650 0.7649

The data reveals that EB achieves the highest average seman-

tic similarity (0.7917), followed by OB (0.7832) and S2R (0.7538).

This suggests that OB and EB are relatively easier for ChatGPT to

generate, while S2R presents the greatest challenge. Two factors

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

contribute to the ease of generating OB and EB: (1) OB and EB typi-

cally express opposite meanings in bug reports, allowing inference

from one to the other; (2) S2R, which describes user actions when

discovering a bug, often implies OB and EB, aiding ChatGPT in

their generation. Conversely, S2R generation is more difficult due

to: (1) the limited training of most LLMs on software bug reports,

resulting in better performance on generic tasks but poorer results

on bug report generation; (2) the complexity and diversity of soft-

ware usage scenarios, which complicate accurate reasoning about

user actions.

Interestingly, ChatGPT’s effectiveness in generating elements

varies across software projects. For example, the semantic similarity

of generated OB ranges from 0.7661 for AspectJ to 0.8061 for SWT.

5.3 RQ3: How efficient is ChatBR in generating
missing information?

5.3.1 RQ 3.1: How does the number of missing information affect
ChatBR’s efficiency? Figure 4 illustrates the number of ChatGPT

runs required to generate missing information for bug reports lack-

ing one or two elements in a 5-round experiment. The x-axis rep-

resents the number of ChatGPT runs, with a maximum of 5. The

y-axis shows the number of bug reports for which ChatGPT suc-

cessfully generated missing information. Note that the total number

of bug reports is 435 (87× 5 = 435) due to the 5-round experimental

design.

Figure 4: Number of ChatGPT runs required to generatemiss-
ing information for bug reports with one or two absent ele-
ments

The results demonstrate that ChatBR can generate missing infor-

mation for 99.62% of bug reports missing one element within three

ChatGPT runs. Moreover, ChatBR successfully generates missing in-

formation for approximately 76.93% of these bug reports in a single

run. For bug reports missing two elements, ChatBR generates the

missing information for 97.93% within three runs, a slight decrease

of 1.69% compared to the single-element case. Additionally, ChatBR

generates missing information for about 68.81% of two-element

missing reports in a single run, an 8.12% decrease compared to the

single-element scenario. These findings indicate that as the number

of missing elements in bug reports increases, more ChatGPT runs

are required to generate the missing information. In other words,

when more information is absent from bug reports, ChatGPT has

less context to work with, which impacts ChatBR’s efficiency.

5.3.2 RQ3.2: How does the type ofmissing information affect ChatBR’s
efficiency? Figure 5 illustrates the proportion of bug reports im-

proved by ChatBR after a single ChatGPT run for various missing

element types. Figure 5(a) presents results for bug reports missing

one element type, while Figure 5(b) shows results for those miss-

ing two element types. The x-axis represents different software

projects, and the y-axis indicates the proportion of improved bug

reports.

Figure 5: Proportion of bug reports enhanced by ChatBR
using a single ChatGPT run, categorized by missing element
types

Figure 5(a) reveals that, overall, the proportion of improved bug

reports missing EB is lower than those missing OB or S2R. This

suggests that ChatBR faces greater challenges in generating EBwith

a single ChatGPT run compared to OB and S2R. In other words, for

bug reports missing only one element, absent EB information has

the most significant impact on ChatBR’s efficiency. Additionally,

the number of ChatGPT runs required to generate different element

types varies within the same software project. For instance, in the

SWT project, the proportions of missing OB, EB, and S2R that can be

generated by a single ChatGPT run are 87.69%, 76.92%, and 84.62%,

respectively.

Figure 5(b) demonstrates that the proportion of improved bug

reports missing both EB and S2R is the lowest, followed by those

missing both OB and EB. Bug reports missing both OB and S2R

show the highest proportion of improvement. This indicates that

for bug reports missing two elements, the absence of both EB and

S2R has the most substantial impact on ChatBR’s efficiency.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ChatBR: Automated Assessment and Improvement of Bug Report Quality Using ChatGPT ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

5.4 RQ4: How do different prompts affect the
generation results?

Listings 5 and 6 present the basic Prompt Template 1 and the im-

proved Prompt Template 2, respectively. Prompt Template 1 suc-

cinctly outlines the tasks, requirements, and expected output format

for ChatGPT. Prompt Template 2 builds upon this foundation by

assigning ChatGPT the role of a senior software engineer adept at

writing and modifying bug reports, aligning with our task of bug

report quality improvement.

Listing 5: Prompt Template 1
Prompt Template 1:
− Your task is to infer the appropriate details based on the

context and supplement the bug report to ensure it contains

clear and complete OB(Observed Behavior), EB(Expected

Behavior) , and S2R(Steps to Reproduce) sentences . Also,

improve the wording of these sentences for clarity where

possible .

− Respond in JSON format as follows :

{" id ": "", " title ": "", " description ": "", "OB": "", "EB": "", "

S2R": ""}

<BUG REPORT>...</BUG REPORT>

Listing 6: Prompt Template 2
Prompt Template 2:
− Your role is a senior software engineer , and you are very good

at analyzing and writing bug reports . The bug report may lack

sufficient details in the OB(Observed Behavior), EB(Expected

Behavior) , and S2R(Steps to Reproduce).

− Your task is to infer the appropriate details based on the

context and supplement the bug report to ensure it contains

clear and complete OB/EB/S2R sentences. Also, improve the

wording of these sentences for clarity where possible .

− Respond in JSON format as follows :

{" id ": "", " title ": "", " description ": "", "OB": "", "EB": "", "

S2R": ""}

<BUG REPORT>...</BUG REPORT>

The final prompt template, shown in Listing 4, incorporates best

practices for ChatGPT usage and includes definitions of OB, EB,

and S2R based on Prompt Template 2. These additions aim to en-

hance ChatGPT’s understanding of crucial information, potentially

leading to improved results.

Figure 6 illustrates the effectiveness of these prompt templates in

terms of semantic similarity between generated and original infor-

mation. The orange, green, and purple polylines represent Prompt

Template 1, Prompt Template 2, and the final prompt template,

respectively. Across all six software projects, the purple polyline

consistently appears above the others, demonstrating the superior

performance of the final prompt template. This suggests that pro-

viding specific definitions of OB, EB, and S2R enables ChatGPT to

better understand its task and generate results more closely aligned

with the ground truth.

Figure 6: Effectiveness of different prompts

Table 4 compares the efficiency of different prompt templates

by measuring the number of ChatGPT runs required. These results

are aggregated from 5-round experiments, with "𝑟𝑛, 𝑛 ∈ {1, 2..., 5}"
representing the total number of ChatGPT runs for each prompt.

The final prompt template consistently achieves the desired output

within three runs, while Prompt Template 1 and Prompt Template

2 often require up to five runs. Notably, for the AspectJ project, the

final prompt template generates the missing information in just

two runs. Prompt Template 2 shows a slight improvement over

Prompt Template 1, as evidenced by its ability to generate missing

information within three runs for the Tomcat project.

5.5 RQ5: How effective is ChatGPT compared
with other LLMs?

Table 5 compares the effectiveness of ChatGPT with two other

LLMs, Llama2-7B and Vicuna-7B, in terms of semantic similarity

between generated and original information. For each project, the

table presents semantic similarity scores for scenarios where one

element (Columns 3-5) or two elements (Columns 6-11) are miss-

ing. Specifically, column 6 shows the semantic similarity between

generated and original OB when both OB and EB are missing.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 4: Efficiency of different prompts

Project Scenario Prompt Template 1 Prompt Template 2 Final Prompt Template

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

AspectJ

OB 17 2 0 1 0 18 2 0 0 0 20 0 0 0 0

EB 14 4 0 0 2 14 4 1 0 1 15 5 0 0 0

S2R 12 5 2 0 1 15 5 0 0 0 20 0 0 0 0

OB_EB 15 4 1 0 0 18 1 1 0 0 18 2 0 0 0

OB_S2R 15 4 0 0 1 17 1 1 1 0 17 3 0 0 0

EB_S2R 9 2 3 4 2 14 1 0 0 5 15 5 0 0 0

Birt

OB 114 18 8 1 4 127 14 3 1 0 110 30 5 0 0

EB 89 22 13 7 14 93 20 10 5 17 85 34 23 3 0

S2R 95 28 9 5 8 119 17 5 2 2 119 24 2 0 0

OB_EB 103 27 11 1 3 126 15 2 1 1 75 41 23 4 2

OB_S2R 103 26 11 4 1 123 16 4 2 0 101 32 10 1 1

EB_S2R 78 33 10 6 18 79 29 11 11 15 76 32 31 4 2

Eclipse

OB 62 11 1 0 1 67 7 0 0 1 60 13 2 0 0

EB 44 17 6 2 6 52 7 9 3 4 43 20 12 0 0

S2R 53 12 6 3 1 63 8 4 0 0 59 13 2 1 0

OB_EB 54 15 1 4 1 67 3 4 1 0 56 12 7 0 0

OB_S2R 66 9 0 0 0 69 5 0 1 0 65 8 2 0 0

EB_S2R 38 14 5 6 12 51 14 4 5 1 49 16 8 2 0

JDT

OB 86 17 1 1 0 94 10 1 0 0 87 15 3 0 0

EB 65 29 4 2 5 76 16 4 2 7 74 20 11 0 0

S2R 71 16 4 3 11 91 9 4 1 0 85 15 5 0 0

OB_EB 82 20 2 0 1 90 14 1 0 0 67 23 14 1 0

OB_S2R 92 7 4 1 1 93 12 0 0 0 81 15 9 0 0

EB_S2R 52 30 8 3 12 67 15 6 3 14 67 18 12 7 1

SWT

OB 55 10 0 0 0 60 5 0 0 0 57 8 0 0 0

EB 43 10 5 2 5 50 11 1 2 1 50 8 6 1 0

S2R 47 10 3 1 4 56 5 3 1 0 55 9 1 0 0

OB_EB 57 8 0 0 0 57 7 1 0 0 56 9 0 0 0

OB_S2R 55 7 2 0 1 59 5 1 0 0 58 7 0 0 0

EB_S2R 37 13 5 0 10 51 9 4 0 1 39 13 11 2 0

Tomcat

OB 22 1 2 0 0 25 0 0 0 0 25 0 0 0 0

EB 16 5 2 2 0 17 6 2 0 0 19 5 1 0 0

S2R 13 3 1 1 7 24 1 0 0 0 21 3 1 0 0

OB_EB 18 3 2 1 1 20 5 0 0 0 20 5 0 0 0

OB_S2R 23 1 0 1 0 23 1 1 0 0 20 4 1 0 0

EB_S2R 14 6 1 2 2 16 7 2 0 0 18 3 4 0 0

*Note: "r𝑛" is the abbreviation of "run 𝑛 times"

Table 5: Effectiveness of different LLMs

LLM Project OB EB S2R OB_EB OB_S2R EB_S2R

OB EB OB S2R EB S2R

Llama2-7B

AspectJ 0.0847 0.0000 0.0419 0.0264 0.0382 0.0282 0.0422 0.0000 0.0000

Birt 0.1685 0.0527 0.0808 0.0770 0.0867 0.0298 0.0325 0.0399 0.0292

Eclipse 0.1748 0.0309 0.0669 0.0790 0.0731 0.0557 0.0510 0.0000 0.0000

JDT 0.1036 0.1071 0.0547 0.0652 0.0549 0.0177 0.0158 0.0237 0.0250

SWT 0.1762 0.0738 0.1613 0.0761 0.0736 0.0438 0.0409 0.1213 0.1186

Tomcat 0.2474 0.0400 0.0000 0.1974 0.1831 0.1372 0.1435 0.1580 0.1580

Vicuna-7B

AspectJ 0.1505 0.0000 0.0000 0.2387 0.2225 0.0000 0.0000 0.2197 0.1744

Birt 0.3403 0.2056 0.0971 0.3182 0.2850 0.3811 0.3490 0.1848 0.1771

Eclipse 0.4179 0.1611 0.0000 0.3723 0.3806 0.2469 0.2503 0.2657 0.2730

JDT 0.2448 0.1437 0.0274 0.3452 0.3062 0.1629 0.1245 0.1527 0.1390

SWT 0.3339 0.1704 0.0581 0.4331 0.3658 0.0676 0.0595 0.3084 0.2977

Tomcat 0.1732 0.1474 0.0000 0.3068 0.3037 0.0000 0.0000 0.1567 0.1631

ChatGPT

AspectJ 0.7661 0.8207 0.7530 0.7535 0.8149 0.7541 0.7429 0.8110 0.7440

Birt 0.7822 0.7844 0.7393 0.7772 0.7714 0.7729 0.7336 0.7718 0.7276

Eclipse 0.7938 0.7938 0.7642 0.7872 0.7837 0.7801 0.7500 0.7813 0.7547

JDT 0.7952 0.7992 0.7629 0.7842 0.7817 0.7805 0.7510 0.7872 0.7563

SWT 0.8040 0.8025 0.7725 0.7950 0.7833 0.7835 0.7574 0.7896 0.7649

Tomcat 0.8061 0.8019 0.7720 0.7964 0.7815 0.7850 0.7574 0.7899 0.7654

ChatGPT significantly outperforms both Llama2-7B andVicuna-

7B. The maximum semantic similarity score for ChatGPT-generated

information reaches 0.8207, compared to 0.2474 for Llama2-7B and

0.4179 for Vicuna-7B. Upon closer examination, we found that the

outputs from Vicuna-7B and Llama2-7B often deviate from the

required JSON format specified in the prompts. Moreover, some of

their outputs merely replicate the input prompts. We hypothesize

that the inferior performance of Vicuna-7B and Llama2-7B may

be attributed to their smaller model sizes, which likely impede their

ability to effectively process and respond to complex bug reports.

6 THREATS TO VALIDITY
Internal Threats. Internal threats to our study relate to the data

leakage of ChatGPT. However, there is no result that the gener-

ated information is the same as the original information in our

experiment. This indicates that ChatGPT does not rely only on the

memory for the training data. In fact, ChatGPT has a strong rea-

soning ability based on the relevant project information in similar

domains or target projects. It can reason out the missing informa-

tion related to bug reports accurately. In fact, fine-tuning LLMs

can further improve the effectiveness and efficiency of generating

missing information, which has been studied in other fields [22, 38].

External Threats. The main external threat to our study is the

generality of ChatBR. Our experiment is conducted on a dataset of

bug reports from six publicly available software projects. The limi-

tation of the research domain and types of bug reports may affect

the effectiveness of bug report assessment and improvement, espe-

cially for specific types of bug reports. Nevertheless, our approach

is generic and can be extended to other software projects.

7 RELATEDWORK
7.1 Assessing Bug Report Quality
The quality of bug reports has a great impact on a series of software

testing activities, such as bug localization and bug fixing. Thus,

there have been some studies on bug report quality assessment.

Most of them utilize Machine Learning (ML) or heuristic rules to

classify the quality of bug reports by extracting all kinds of met-

rics related to bug reports. Fan et al. [17] extracted features from

5 dimensions (i.e., the reporter experience, collaboration network,

completeness, readability, and text) and used a random forest classi-

fier to identify valid bug reports. Zimmermann et al. [53] designed

CUEZILLA, a prototype tool to assess bug report quality by select-

ing the information that the bug fixer expects the user to provide as

features and using supervised machine learning algorithms to train

a prediction model. Besides, it provides recommendations to bug

reporters to make better bug reports. Different from CUEZILLA,

Karim et al. [25] built and assessed classification models using four

different text classification techniques to predict key features from

historical bug-fixing knowledge. Chaparro et al. [9] developed three

versions of DeMIBuD using regular expressions, heuristic rules and

Natural Language Processing (NLP), and Machine Learning (ML) to

detect missing OB, EB, and S2R elements automatically. Unlike the

above approaches, we assess the quality of bug reports by detecting

the absence of crucial information in bug reports using a fine-tuned

BERT pre-trained model. The goal of this strategy is to leverage

the performance and advanced features of BERT to improve the

efficiency and effectiveness of bug report quality assessment.

7.2 Improving Bug Report Quality
Existing works on improving the quality of bug reports mainly

focus on improving or adding crucial information entries, such as

replication steps, execution trajectories, and problem descriptions.

Feng et al. [18] proposed AdbGPT, which makes use of few-shot

and Chain of Thought (CoT) [41] to generate S2Rs in a developer-

like manner by feeding XML textual information into LLMs. Zhao

et al. [50] proposed ReCDroid+ based on the previous ReCDroid,

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

ChatBR: Automated Assessment and Improvement of Bug Report Quality Using ChatGPT ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

which employed an HTML parser [31], CNN (Convolutional Neural

Network) [26], and LSTM (Long Short-Term Memory Network)

[19] to extract crashes and S2R sentences. In addition, improving

the bug report title has attracted much attention from researchers.

For example, Chen et al. [12] proposed iTAPE, which utilizes an

approach based on the Seq2Seq model [37] to generate report titles.

Zhang et al. [47] proposed to generate titles for bug reports by fine-

tuning the BART [28] model. Different from the above approaches,

our approach is to improve the quality of reports by generating

the missing crucial information in bug reports based on existing

information and predefined prompt templates. The goal of this

strategy is to leverage the outperforming capacity of ChatGPT for

understanding and generating natural language text that is special

to our task and requirement.

8 CONCLUSION
In this work, we focus on using ChatGPT to improve the quality of

bug reports. Given the cost limitation of using ChatGPT, we aim

to minimize the number of ChatGPT runs by assessing the quality

of bug reports accurately. We propose ChatBR, a two-step strategy

to improve the quality of bug reports that combines a pre-trained

model and ChatGPT to generate missing OB, EB, and S2R infor-

mation. The experimental results show that ChatBR significantly

outperforms the baseline method in assessing bug report quality,

showing an improvement of 25.38% to 29.20% in precision. In the

task of generating missing information, ChatBR achieves an aver-

age semantic similarity of 77.62% between the generated content

and the original information across six diverse real-world software

projects.

In the future, we plan to conduct a survey with expert developers

to further explore the reliability and validity of ChatBR for other

downstream tasks, e.g., bug localization [6, 33], bug fixing [52],

and duplicate bug report detection [46, 48]. In addition, we plan to

investigate the performance of LLMs in improving the quality of

bug reports in the few-shot and CoT settings.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers for their constructive com-

ments and valuable suggestions as well as all the teachers and

students who participated in this experiment. This research is sup-

ported by the National Natural Science Foundation of China (No.

62202414, No. 61972335 and No. 62002309), the Open Foundation of

Yunnan Key Laboratory of Software Engineering (No. 2023SE201),

the Six Talent Peaks Project in Jiangsu Province (No. RJFW-053);

the Jiangsu “333” Project and Yangzhou University Top-level Tal-

ents Support Program (2019), Postgraduate Research & Practice

Invocation Program of Jiangsu Province (No. KYCX23_3563).

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek

Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,

and Yichao Zhou (Eds.). Association for Computational Linguistics, 2655–2668.

https://doi.org/10.18653/V1/2021.NAACL-MAIN.211

[2] AspectJ. 2023. AspectJ. https://bugs.eclipse.org/bugs/show_bug.cgi?id=384398.

2023.

[3] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan

Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask,

multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and

interactivity. arXiv preprint arXiv:2302.04023 (2023).
[4] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,

and Thomas Zimmermann. 2008. What makes a good bug report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering. 308–318.

[5] Steven Bird and Edward Loper. 2004. NLTK: The Natural Language Toolkit.

In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, Barcelona, Spain, July 21-26, 2004 - Poster and Demonstration. ACL.
https://aclanthology.org/P04-3031/

[6] Lili Bo, Yue Li, Xiaobing Sun, XiaoxueWu, and Bin Li. 2023. VulLoc: vulnerability

localization based on inducing commits and fixing commits. Frontiers Comput.
Sci. 17, 3 (2023), 173207. https://doi.org/10.1007/S11704-022-1729-X

[7] Junming Cao, Shouliang Yang, Wenhui Jiang, Hushuang Zeng, Beijun Shen, and

Hao Zhong. 2021. BugPecker: locating faulty methods with deep learning on

revision graphs. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association
for Computing Machinery, New York, NY, USA, 1214–1218. https://doi.org/10.

1145/3324884.3418934

[8] Partha Chakraborty, Mahmoud Alfadel, and Meiyappan Nagappan. 2024. RLoca-

tor: Reinforcement Learning for Bug Localization. IEEE Transactions on Software
Engineering (2024), 1–14. https://doi.org/10.1109/TSE.2024.3452595

[9] Oscar Chaparro, Jing Lu, Fiorella Zampetti, LauraMoreno, Massimiliano Di Penta,

Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting missing

information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 396–407.

[10] ChatGPT. 2023. ChatGPT. https://openai.com/blog/chatgpt. 2023.

[11] ChatGPT. 2023. ChatGPT. https://platform.openai.com/docs/guides/prompt-

engineering. 2023.

[12] Songqiang Chen, Xiaoyuan Xie, Bangguo Yin, Yuanxiang Ji, Lin Chen, and

Baowen Xu. 2020. Stay professional and efficient: automatically generate titles

for your bug reports. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. 385–397.

[13] Xin Chen, He Jiang, Xiaochen Li, Tieke He, and Zhenyu Chen. 2018. Auto-

mated quality assessment for crowdsourced test reports of mobile applications.

In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 368–379.

[14] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,

Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 2023.

Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. lmsys. org (accessed 14 April 2023) 2, 3 (2023), 6.

[15] Agnieszka Ciborowska and Kostadin Damevski. 2023. Too Few Bug Reports?

Exploring Data Augmentation for Improved Changeset-based Bug Localization.

arXiv preprint arXiv:2305.16430 (2023).
[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805 (2018).
[17] Yuanrui Fan, Xin Xia, David Lo, and Ahmed E. Hassan. 2020. Chaff from the

Wheat: Characterizing and Determining Valid Bug Reports. IEEE Transactions
on Software Engineering 46, 5 (2020), 495–525.

[18] Sidong Feng and Chunyang Chen. 2023. Prompting Is All Your Need: Automated

Android Bug Replaywith Large LanguageModels. arXiv preprint arXiv:2306.01987
(2023).

[19] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 2000. Learning to forget:

Continual prediction with LSTM. Neural computation 12, 10 (2000), 2451–2471.

[20] Rui Hao, Yang Feng, James A Jones, Yuying Li, and Zhenyu Chen. 2019. CTRAS:

Crowdsourced test report aggregation and summarization. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 900–911.

[21] Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, and Yan Lei. 2020. Deep

learning based valid bug reports determination and explanation. In 2020 IEEE
31st International Symposium on Software Reliability Engineering (ISSRE). IEEE,
184–194.

[22] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning

for text classification. arXiv preprint arXiv:1801.06146 (2018).
[23] Vikramaditya Jakkula. 2006. Tutorial on support vector machine (svm). School

of EECS, Washington State University 37, 2.5 (2006), 3.

[24] Derry Jatnika, Moch Arif Bijaksana, and Arie Ardiyanti Suryani. 2019. Word2vec

model analysis for semantic similarities in english words. Procedia Computer
Science 157 (2019), 160–167.

[25] Md Rejaul Karim, Akinori Ihara, Eunjong Choi, and Hajimu Iida. 2019. Identify-

ing and predicting key features to support bug reporting. Journal of Software:
Evolution and Process 31, 12 (2019), e2184.

[26] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

11

https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://bugs.eclipse.org/bugs/show_bug.cgi?id=384398
https://aclanthology.org/P04-3031/
https://doi.org/10.1007/S11704-022-1729-X
https://doi.org/10.1145/3324884.3418934
https://doi.org/10.1145/3324884.3418934
https://doi.org/10.1109/TSE.2024.3452595
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Lili Bo, Wangjie Ji, Xiaobing Sun, Ting Zhang, Xiaoxue Wu, and Ying Wei

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[27] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke

Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[28] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising

sequence-to-sequence pre-training for natural language generation, translation,

and comprehension. arXiv preprint arXiv:1910.13461 (2019).
[29] Haixia Liu. 2017. Sentiment analysis of citations using word2vec. arXiv preprint

arXiv:1704.00177 (2017).

[30] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of

prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[31] lxml. 2023. lxml. https://lxml.de/tutorial.html. 2014.

[32] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

http://arxiv.org/abs/1301.3781

[33] Zhen Ni, Lili Bo, Bin Li, Tianhao Chen, Xiaobing Sun, and Xiaoxue Wu. 2022. An

approach of method-level bug localization. IET Software 16, 4 (2022), 422–437.
[34] Roberto Poli, Michael Healy, and Achilles Kameas. 2010. Theory and applications

of ontology: Computer applications. Springer.
[35] Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-

vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial

intelligence? arXiv preprint arXiv:2208.06213 (2022).
[36] Yang Song and Oscar Chaparro. 2020. Bee: A tool for structuring and analyzing

bug reports. In Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering.
1551–1555.

[37] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence

Learning with Neural Networks. In Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec, Canada, Zoubin Ghahra-

mani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-

berger (Eds.). 3104–3112. https://proceedings.neurips.cc/paper/2014/hash/

a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

[38] Robert Tinn, Hao Cheng, Yu Gu, Naoto Usuyama, Xiaodong Liu, Tristan Nau-

mann, Jianfeng Gao, and Hoifung Poon. 2023. Fine-tuning large neural language

models for biomedical natural language processing. Patterns 4, 4 (2023).
[39] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[40] YaqingWang, Quanming Yao, James T Kwok, and Lionel MNi. 2020. Generalizing

from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1–34.

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei

Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting

Elicits Reasoning in Large Language Models. In Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022.

[42] Jason Wei and Kai Zou. 2019. Eda: Easy data augmentation techniques for

boosting performance on text classification tasks. arXiv preprint arXiv:1901.11196
(2019).

[43] Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. 2016. Combining

Word Embedding with Information Retrieval to Recommend Similar Bug Reports.

In 2016 IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE). 127–137. https://doi.org/10.1109/ISSRE.2016.33

[44] Min-Ling Zhang, Yu-Kun Li, Xu-Ying Liu, and Xin Geng. 2018. Binary relevance

for multi-label learning: an overview. Frontiers of Computer Science 12 (2018),
191–202.

[45] Tao Zhang, Jiachi Chen, He Jiang, Xiapu Luo, and Xin Xia. 2017. Bug report en-

richment with application of automated fixer recommendation. In 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC). IEEE, 230–240.

[46] Ting Zhang, DongGyun Han, Venkatesh Vinayakarao, Ivana Clairine Irsan,

Bowen Xu, Ferdian Thung, David Lo, and Lingxiao Jiang. 2023. Duplicate bug

report detection: How far are we? ACM Transactions on Software Engineering
and Methodology 32, 4 (2023), 1–32.

[47] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, DongGyun Han, David Lo,

and Lingxiao Jiang. 2022. iTiger: an automatic issue title generation tool. In

Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1637–1641.

[48] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. 2023. Cupid:

Leveraging chatgpt for more accurate duplicate bug report detection. arXiv
preprint arXiv:2308.10022 (2023).

[49] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. 2024. Revisiting

Sentiment Analysis for Software Engineering in the Era of Large Language

Models. ACM Trans. Softw. Eng. Methodol. (Sept. 2024). https://doi.org/10.1145/

3697009 Just Accepted.

[50] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,

William GJ Halfond, and Tingting Yu. 2022. Recdroid+: Automated end-to-end

crash reproduction from bug reports for android apps. ACM Transactions on
Software Engineering and Methodology (TOSEM) 31, 3 (2022), 1–33.

[51] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be

fixed? More accurate information retrieval-based bug localization based on bug

reports. In 2012 34th International Conference on Software Engineering (ICSE).
14–24. https://doi.org/10.1109/ICSE.2012.6227210

[52] Zhou Zhou, Lili Bo, Xiaoxue Wu, Xiaobing Sun, Tao Zhang, Bin Li, Jiale Zhang,

and Sicong Cao. 2022. SPVF: security property assisted vulnerability fixing via

attention-based models. Empirical Software Engineering 27, 7 (2022), 171.

[53] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian

Schroter, and Cathrin Weiss. 2010. What makes a good bug report? IEEE
Transactions on Software Engineering 36, 5 (2010), 618–643.

12

https://lxml.de/tutorial.html
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1109/ISSRE.2016.33
https://doi.org/10.1145/3697009
https://doi.org/10.1145/3697009
https://doi.org/10.1109/ICSE.2012.6227210

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Overview
	3.2 Training Phase
	3.3 Detection Phase
	3.4 Generation Phase

	4 EXPERIMENTAL DESIGN
	4.1 Research Questions
	4.2 Dataset
	4.3 Evaluation Metrics
	4.4 Experimental Setup

	5 EXPERIMENTAL RESULTS
	5.1 RQ1: How effective is ChatBR's detector in identifying missing information?
	5.2 RQ2: How effective is ChatBR's generator in generating missing information?
	5.3 RQ3: How efficient is ChatBR in generating missing information?
	5.4 RQ4: How do different prompts affect the generation results?
	5.5 RQ5: How effective is ChatGPT compared with other LLMs?

	6 THREATS TO VALIDITY
	7 RELATED WORK
	7.1 Assessing Bug Report Quality
	7.2 Improving Bug Report Quality

	8 CONCLUSION
	References

