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ABSTRACT
Bug reports, containing crucial information such as the Observed

Behavior (OB), the Expected Behavior (EB), and the Steps to Re-

produce (S2R), can help developers localize and fix bugs efficiently.

However, due to the increasing complexity of some bugs and the

limited experience of some reporters, many bug reports miss this

crucial information. Although machine learning (ML)-based and

information retrieval (IR)-based approaches have been proposed to

detect and supplement the missing information in bug reports, the

performance of these approaches depends heavily on the size and

quality of bug report datasets.

In this paper, we present ChatBR, an approach for automated

assessment and improvement of bug report quality using ChatGPT.

First, we fine-tune a BERT model using manually annotated bug

reports to create a sentence-level multi-label classifier to assess the

quality of bug reports by detecting the presence of OB, EB, and

S2R. Second, we use ChatGPT in a zero-shot setup to generate the

missing information (OB, EB, and S2R) to improve the quality of

bug reports. Finally, the output of ChatGPT is fed back into the

classifier for verification until ChatGPT generates the missing in-

formation. Experimental results demonstrate ChatBR’s superiority

in both detecting and generating missing information in bug re-

ports. For detection, ChatBR surpasses the state-of-the-art method,

improving precision by 25.38% to 29.20%. In generating missing

information, ChatBR achieves an average semantic similarity of

77.62% between generated and original content across six diverse

projects. Furthermore, ChatBR can generate more than 99.9% of
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high-quality bug reports (i.e., bug reports that are full of OB, EB,

and S2R) within five ChatGPT runs.
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1 INTRODUCTION
Bug reports are vital for developers during software development

as they document unexpected software behaviors encountered by

users [53]. OB (Observed Behavior), EB (Expected Behavior), and

S2R (Steps to Reproduce) offer important information that is highly

useful for developers to trigger and fix bugs. Specifically, EB de-

scribes the correct or intended functionality of the software system.

OB details the observed performance or functionality that deviates

from the EB. S2R outlines the specific actions required to consis-

tently recreate the reported issue. Missing the above information

may waste the time of developers in understanding and reasoning

about bugs for correct fixes.

Many approaches have been proposed to assess and improve the

quality of bug reports [4, 13, 20, 21]. Some approaches typically de-

pend on heuristic rules and expert knowledge for detecting crucial

information in bug reports, but they are difficult to extend with

the increasing rules and software scale. Zhang et al. [45] present

an information retrieval (IR)-based approach to detect the missing

information and use historically similar bug reports to enrich them.

Unfortunately, historically similar bug reports are not always avail-

able. Moreover, directly adding sentences extracted from similar

bug reports can cause semantic incoherence. In addition, machine

1
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learning (ML)-based approaches are proposed and have shown their

good performance in assessing bug reports. For example, Song et al.

[36] develop multiple binary classification models to detect missing

OB, EB, and S2R information in bug reports. However, ML-based

approaches for assessing bug reports face limitations due to two pri-

mary factors. First, these approaches struggle to effectively capture

the deep semantics of natural language context. Second, their per-

formance heavily depends on large-scale, high-quality bug report

datasets for training, which are not always available.

In this paper, we propose a novel approach (ChatBR) based on

ChatGPT to alleviate the above limitations.

To improve the accuracy of assessing bug reports, we adopt

the pre-trained model that relies on the attention mechanism to

capture the deep semantics of natural language context effectively.

Only a small number of bug reports are needed to fine-tune the

pre-trained model, which can save much time in collecting high-

quality bug reports. Furthermore, the generated bug reports are

iteratively returned to the detector to check for missing information,

improving the accuracy of assessing bug reports and the quality of

final bug reports.

To ensure the semantic coherence of the improved bug report

description, we use ChatGPT, a large language model (LLM), to

generate a bug report context that is easy to read. First, ChatGPT

has a natural ability to generate a context that is semantically coher-

ent. Second, ChatGPT contains rich bug-related knowledge, which

alleviates the dependence on similar bug reports. Considering the re-

source limitation of using ChatGPT, we utilize prompt engineering

for guiding ChatGPT to output accurate bug reports. Furthermore,

only incomplete bug reports (i.e., the bug reports missing OB, EB,

or S2R) are input to ChatGPT to minimize the number of ChatGPT

runs.

In summary, ChatBR (Automated assessment and improvement

of Bug Report quality using ChatGPT) is a two-step approach. It

consists of a detector and a generator. The detector is a fine-tuned,

pre-trainedmodel used to detect OB, EB, or S2R in bug reports. Chat-

GPT serves as a generator for missing information in bug reports.

The detector iteratively verifies ChatGPT’s output, ensuring only

complete bug reports (containing OB, EB, and S2R simultaneously)

are presented to users. We trained and evaluated the detector using

Song et al.’s dataset [36]. The generator’s performance was assessed

on bug reports from six open-source projects. Results demonstrate

that ChatGPT-generated information achieves 73.17% to 85.05%

semantic similarity with original information across these projects.

Notably, ChatGPT successfully generates missing information for

99.9% of bug reports within five runs.

The main contributions of this paper can be summarised as

follows:

• We propose a two-step framework consisting of a detector (com-

bining data augmentation and a fine-tuned pre-trained model)

and a generator (using ChatGPT) to assess and improve the qual-

ity of bug reports by automatically supplementing the missing

OE, EB, and S2R.

• Experimental results demonstrate ChatBR’s superiority in both

detecting and generating missing information in bug reports.

For detection, ChatBR surpasses the state-of-the-art approach,

improving precision by 25.38% to 29.20%. In generating missing

Listing 1: Excerpt from example bug report in AspectJ
{

"ID" : "384398",

"Title" : "Type Mismatch error when using inner classes

contained in generic types within ITDs",

"Description" : " Please see attached example project .

I get the following (strange) compiler error: Type mismatch:

cannot convert from A<T>.InnerA<> to A.InnerA Aspect.aj

/AspectJInnerclassInGenericTypeBug/src/de/example line 12. "

}

Legend: OB EB S2R

Listing 2: Excerpt from refactored example bug report
{

"ID" : "384398",

"Title" : "Type Mismatch error when using inner classes

contained in generic types within ITDs",

"Description" : " Please see attached example project .",

"OB" : " I get the following ( strange ) compiler error : Type

mismatch: cannot convert from A<T>.InnerA<> to A.InnerA

Aspect.aj /AspectJInnerclassInGenericTypeBug/src /de/example

line 12.",

"EB" : "",

"S2R" : ""

}

information, ChatBR achieves an average semantic similarity of

77.62% between generated and original content across six diverse

projects.

• Our source code and datasets are publicly available to facilitate

further research.
1

The paper is structured as follows. Section 2 illustrates our ap-

proach through a motivating example. Section 3 describes ChatBR

in detail. Section 4 presents the experimental design. Section 5

shows the experimental results and conducts a deep analysis of

the results. We discuss threats to validity in Section 6. Section 7

summarizes the related work. Finally, Section 8 concludes our work.

2 MOTIVATING EXAMPLE
In this section, we use a motivating example to illustrate our ap-

proach.

Listing 1 presents an excerpt from a sample bug report in the

AspectJ project [2]. The structural elements of the report are color-

coded for clarity. To address the issues outlined in this report, de-

velopers must carefully read and comprehend the entire document.

Listing 2 shows an excerpt from the refactored example bug

report in Listing 1. We can see that the bug report in Listing 1 only

describes the OB information (i.e., "Type Mismatch error"), while
EB and S2R are missing. This is determined by the detector, a pre-

trained model fine-tuned with the bug report dataset after data

augmentation.

1
https://github.com/jiwangjie/ChatBR

2

https://github.com/jiwangjie/ChatBR
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Listing 3: Excerpt from improved example bug report
{

"ID" : "384398",

"Title" : "Type Mismatch error when using inner classes

contained in generic types within ITDs",

"Description" : " Please see attached example project .",

"OB" : "When attempting to compile the code, a type mismatch

error occurs with the message: 'Type mismatch: cannot convert

from A<T>.InnerA<> to A.InnerA Aspect.aj /

AspectJInnerclassInGenericTypeBug/src /de/example line 12.'",

"EB" : "The compiler should not produce a type mismatch error

when dealing with inner classes contained in generic types

within ITDs .",

"S2R" : "1. Compile the provided example project . 2. inspect

the compiler error generated when using inner classes

contained in generic types within ITDs ."

}

Existing work generates the missing information by adding his-

torically similar bug report information directly to the current bug

report [45]. This can disrupt the semantic coherence. LLMs are

transformer-based neural networks that can predict the next token

based on the preceding context [35]. They can perform the assigned

tasks with prompts. Leveraging the vast capabilities of LLMs and

prompt engineering, we design prompt templates for ChatGPT to

generate the missing information.

Listing 3 showcases an excerpt from an enhanced bug report.

It demonstrates how ChatGPT generates the EB and S2R for the

original bug report shown in Listing 1. Upon manual verification,

the generated EB and S2R prove to be accurate and satisfactory. In

this instance, ChatGPT run three times to produce the missing EB

and S2R elements.

3 APPROACH
3.1 Overview
Figure 1 shows the overview of ChatBR. It consists of three phases:

the training phase, the detection phase, and the generation phase.

In the training phase, data augmentation techniques are adopted to

alleviate the problem of data imbalance, thereby training a detec-

tor, i.e., the pre-trained BERT model [16]. In the detection phase,

the detector is used to detect the missing elements (i.e., OB, EB,

and S2R) in bug reports. In the generation phase, the prompt tem-

plates are designed to guide ChatGPT in generating the missing

information. In addition, the improved bug reports are returned to

the detector to check whether ChatGPT successfully generates the

missing information.

3.2 Training Phase
In this phase, we aim to construct a detector by training a multi-

label classifier. It consists of three steps: data preprocessing, data

augmentation, and fine-tuning a pre-trained BERT model.

The first step is data preprocessing. The initial bug reports are

from the publicly available dataset shared by Song et al. [36]. We

extract the ID, title, and description from each bug report, removing

non-textual elements (e.g., images, URLs) and code information (e.g.,

code blocks, stack traces) as per Song et al.’s method [36]. We then

apply the sentence tokenizer from the Natural Language Toolkit [5]

to split bug report descriptions into individual sentences. To im-

prove generalization, we remove duplicate sentences and those with

fewer than 5 characters, considering the latter uninformative. Given

BERT’s 512-token input limit, we split longer sentences accordingly.

The resulting dataset comprises labeled bug report sentences, each

with a triple indicating the presence (1) or absence (0) of OB, EB, and

S2R, respectively. This process reveals a significant data imbalance

issue (as shown in Table 1).

To alleviate the data imbalance problem, data augmentation is

conducted in the second step. Since semantic changes between the

augmented text and the original text may result in label inconsis-

tencies, we opt for token-level data augmentation [40]. Typically,

token-level data augmentation in natural language can be catego-

rized into four types of operations [42]:

• Synonym Replacement: Select a random word from the text

and substitute it with its synonym from a predefined dictionary.

• Random Insertion: Select a random word from the text and

insert its synonym from a predefined dictionary at a random

position in the text.

• Random Swap: Exchange the positions of two randomly chosen

words within the text.

• Random Deletion: Remove a word selected at random from

the text.

To avoid altering the original semantics by inadvertently delet-

ing key tokens in sentences, we only conduct the former three

operations: synonym replacement, random insertion, and random

swap. To enhance the generalization capability of the augmented

data samples, we modify two key operations: synonym replacement

and random insertion. Specifically, we randomly select 0 to n tokens
to replace or insert, where 𝑛 = 𝜆 × #tokens. Ciborowska et al. [15]

show that the value 𝜆 set to 0.1 produces the best results. In addi-

tion, we use the WordNet toolkit [34] to obtain synonyms. After

the second step, we obtain an augmented dataset, which consists

of sentences of bug reports.

The third step is fine-tuning a pre-trained BERT model with

the augmented dataset to construct a detector. Given that a sin-

gle sentence may contain multiple types of information (OB, EB,

and S2R), we treat the detection of missing information in bug re-

ports as a multi-label classification task. Recent pre-trained models

have demonstrated outstanding performance in the natural lan-

guage processing (NLP) domain, particularly in natural language

understanding and classification tasks, surpassing previous ma-

chine learning and deep learning techniques. Since bug reports are

text-based descriptions written by developers, we regard them as

natural language texts. Thus, we fine-tune BERT, a widely recog-

nized pre-trained model, on the augmented dataset.

3.3 Detection Phase
In this phase, the constructed detector is used to detect whether

bug reports miss critical information, i.e., OB, EB, and S2R. In our

work, the bug reports can be divided into complete bug reports and

incomplete bug reports. A complete bug report contains OB, EB, and

S2R in the sentences of the bug report. An incomplete bug report is

one that misses OB, EB, or S2R in the sentences of the bug report. In

3
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1) Training Phase

2) Detection Phase
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...

Sentence 2
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Bug Report Detector

Detector

Complete

Incomplete

ChatGPTPrompt Template

Figure 1: Overview of ChatBR

order to save the computational cost of ChatGPT in the generation

phase, it can only run on incomplete bug reports. Therefore, it is

necessary to detect missing information accurately.

For each incoming bug report, we apply the same preprocessing

steps used in the training phase to extract individual sentences. The

detector then predicts a label for each sentence. This label is a triple,

representing the presence (1) or absence (0) of OB, EB, and S2R,

as a sentence may contain multiple elements. We then aggregate

these labels across all sentences in the bug report. If any of the

three elements (OB, EB, or S2R) is missing from the entire report

(i.e., no sentence contains that element), the report is considered

incomplete. Only incomplete bug reports proceed to the next phase:

generation.

3.4 Generation Phase
3.4.1 Designing Prompt Templates. Prompt [30] is a set of instruc-

tions that guides LLMs to produce a specific target result [3]. Dif-

ferent prompts can lead to various performances on the same task

[27, 49]. Therefore, it is crucial to design precise prompts. In our

work, we use a single-round dialogue interaction to design prompts

and adopt the following prompting strategies to create a prompt

template suitable for ChatBR: (1) providing important task-related

details or context as much as possible; (2) assigning LLMs a speci-

fied role for our task; (3) using separators in the prompt to indicate

different parts of the input [10, 30]; (4) the output of LLMs should

conform to a common JSON format for better analysis; and (5)

limited by the length of input tokens of LLMs, the prompt should

express the task both accurately and concisely.

Our experimental prompt template, shown in Listing 4, is de-

signed based on the aforementioned prompting strategies. The task

involves generating missing information (OB, EB, and S2R) for in-

complete bug reports, with the LLM playing the role of a software

engineer. We provide definitions for OB, EB, and S2R as expert

knowledge. The model’s task is to infer appropriate details from the

given bug report’s context and supplement it with clear, complete

OB/EB/S2R sentences. We specify that the output should conform

to a JSON format, including fields for ID, Title, Description, OB, EB,
and S2R. The input (incomplete bug report) is similarly reorganized

into this JSON format. ID and Title remain unchanged. Using the

sentence labels obtained during the detection phase, we populate

the corresponding fields. To maintain semantic consistency, sen-

tences retain their original order. Sentences with multiple elements

appear in multiple fields, while those without OB, EB, or S2R are

placed in the Description field to provide context for generating

missing information.

3.4.2 Running ChatGPTwith Prompts. Based on the designed prompt

template, ChatGPT can run efficiently to generate improved bug

reports containing missing information. In order to prevent be-

ing affected by the generated results, a new ChatGPT dialogue

is reopened for each bug report. After receiving a response from

ChatGPT, we first check whether the generated content conforms

to the required JSON format. If the responses do not satisfy the

JSON format requirement, it is necessary to run ChatGPT again for

generation. Otherwise, they are returned to the detector to check

whether ChatGPT generated the missing information. This is an

iterative process until the detector detects all the OB, EB, and S2R.

4 EXPERIMENTAL DESIGN
4.1 Research Questions
In essence, ChatBR consists of a detector and a generator. To eval-

uate the performance of ChatBR, we design the following five re-

search questions:

4
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Listing 4: Final Prompt Template
Prompt Template:
− Your role is a senior software engineer , you are very good at

analyzing and writing bug reports . You should provide clear

and informative sentences for the following categories :

− Observed Behavior(OB): This section should describe the relevant

software behavior , actions , output , or results . Avoid vague

sentences like "the system does not work."

− Expected Behavior(EB): This part should articulate what the

software should or is expected to do, using phrases like "

should ...", "expect ...", or "hope ...". Avoid suggestions or

recommendations for bug resolution .

− Steps to Reproduce(S2R): Include user actions or operations that

can potentially lead to reproducing the issue . Use phrases

like "to reproduce ," " steps to reproduce ," or " follow these

steps ."

− The bug report may lack sufficient details in the OB, EB, and

S2R sections . Your task is to infer the appropriate details

based on the context and supplement the bug report to ensure

it contains clear and complete OB/EB/S2R sentences and

improve the wording of these sentences for clarity where

possible .

− Respond in JSON format as follows :

{" id ": "", " title ": "", " description ": "", "OB": "", "EB": "", "

S2R": ""}

<BUG REPORT>...</BUG REPORT>

• RQ1: How effective is ChatBR’s detector in identifying missing
information?
We compare ChatBR’s detector with BEE[36], the most relevant

state-of-the-art approach. Both use the same initial dataset and

incorporate data augmentation. While BEE employs three bi-

nary classification SVM models [23], ChatBR takes a different

approach. This question aims to evaluate ChatBR’s performance

in detecting missing information in bug reports relative to BEE.

• RQ2: How effective is ChatBR’s generator in generating missing
information?
Given that many existing bug reports lack crucial information

(OB, EB, and S2R), we assess ChatBR’s ability to improve incom-

plete reports. This question explores the generator’s effectiveness

in producing missing details. Two sub-questions further investi-

gate influencing factors:

– RQ2.1: How does the number of missing elements affect
ChatBR’s effectiveness?

– RQ2.2: How does the type of missing elements affect ChatBR’s
effectiveness?

• RQ3: How efficient is ChatBR in generating missing information?
Efficiency is crucial for practical adoption. This question eval-

uates ChatBR’s practicality by examining the number of times

ChatGPT needs to be run. Two sub-questions explore influencing

factors:

– RQ3.1: How does the number of missing elements affect
ChatBR’s efficiency?

– RQ3.2: How does the type of missing elements affect ChatBR’s
efficiency?

• RQ4: How do different prompts affect the generation results?

We investigate the impact of prompt design on ChatGPT’s output.

Starting with a basic template, we refine it by assigning ChatGPT

the role of a senior software engineer skilled in bug report writing.

Finally, we incorporate the specific requirement for OB, EB, and

S2R based on ChatGPT best practices [11].

• RQ5: How effective is ChatGPT compared to other LLMs?
We compare ChatGPT with two open-source LLMs: Vicuna-7B

[14] and Llama2-7B [39]. Llama2 is one of the most popular

LLMs and has not been specifically fine-tuned, which to some ex-

tent represents the foundational capabilities of the open-source

model; Vicuna-7B is a fine-tuned model that has three improve-

ments: (1) multi-turn conversations, (2) memory optimization, (3)

cost reduction. Due to resource constraints, we limit our compar-

ison to models with 7B or fewer parameters. All models undergo

5-round experiments using the same final prompt template.

4.2 Dataset

Table 1: Dataset of training and evaluating the detector

Label Preproccess After Data AugmentationOB EB S2R Before After
0 0 0 87,398 51,559 51,559

1 0 0 7,738 7,642 42,487

0 0 1 5,001 4,897 33,988

0 1 0 1,502 1,487 33,525

1 0 1 1,483 1,481 35,269

1 1 0 239 239 32,191

1 1 1 46 46 15,547

0 1 1 25 25 7,681

Total 103,432 67,376 252,247

4.2.1 Training and evaluation dataset of the detector. Table 1 presents
the dataset used for training and evaluating the detector. The first

three columns show the labels representing the types of bug report

sentences. Columns 4 and 5 display the number of bug report sen-

tences before and after data preprocessing, while column 6 shows

the number after data augmentation. We utilized the publicly avail-

able dataset from Song et al. [36], encompassing 35 real-world

projects, over 5,000 bug reports, and 116,000 bug report sentences

(including titles). After preprocessing, the number of bug report

sentences decreased to 67,376. Following data augmentation, this

number increased to 252,247. We randomly selected 70% of the

data for training and the remaining 30% for testing. As evident

from Table 1, the degree of data augmentation varies for different

types of bug report sentences. For instance, no augmentation was

performed on sentences lacking OB, EB, and S2R, although they

constitute the majority of the dataset. Conversely, multiple aug-

mentation operations were conducted on sentences containing OB,

EB, and S2R to increase their proportion in the dataset.

4.2.2 Evaluation dataset of the generator. To evaluate the perfor-

mance of the generator in ChatBR, we constructed a new dataset

distinct from the one used for training the detector. Figure 2 illus-

trates the distribution of bug reports in this new dataset. It encom-

passes six widely-used projects: AspectJ, Birt, Eclipse, JDT, SWT,

and Tomcat [7, 8, 51]. We randomly selected 600 bug reports from

each project, totaling 3,600 bug reports, which were then input
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into the detector from the training phase. The detector identified

193 complete bug reports containing OB, EB, and S2R information.

Due to ChatGPT’s input length limitation, we removed bug reports

exceeding 4,096 characters, resulting in 171 complete bug reports.

Figure 2: Distribution of bug reports for evaluating the gen-
erator

Using these 171 final bug reports, we synthesized incomplete

reports by manually deleting OB, EB, and S2R information. This

deletion strategy involved removing one or two pieces of informa-

tion from OB, EB, and S2R, resulting in six variants of incomplete

bug reports for each complete one. Considering the cost of running

ChatGPT (171 × 6 × 5 × 5 = 25, 650) 2, we randomly selected half of

the final bug reports from each project. Ultimately, 87 bug reports

were used for evaluating the generator.

4.3 Evaluation Metrics
We employ four metrics to assess the effectiveness of ChatBR’s

detector: precision, accuracy, recall, and F1-score. To evaluate the

generator’s effectiveness, we utilize semantic similarity [24, 43],

specifically cosine similarity. In our experiment, we use Word2Vec

[32] to convert words into vectors. Following the prior work [29],

we average the word vectors in a sentence to obtain the sentence

embedding.

• Accuracy evaluates the proportion of correctly labeled sentences.
It is calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁
(1)

• Recall measures the proportion of actual positive cases that

were correctly identified. It is calculated as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

2
The number 171, 6, 5, 5 in this equation represent the number of bug reports, the

number of variants for each bug report, the maximum number of runs per bug report,

and 5-round experiments. Thus, the result 25,650 is the maximum number of ChatGPT

runs in our experiments.

• Precision represents the fraction of true elements among the

detected ones. It is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

• F1-Score is the harmonic mean of Recall and Precision, calcu-

lated as:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(
Precision×Recall
Precision+Recall

)
(4)

• Cosine Similarity measures the semantic similarity between

the sentence with generatedmissing information and the original

sentence. It is calculated using:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵) = 𝐴 · 𝐵
∥𝐴∥∥𝐵∥ (5)

𝐴 · 𝐵 is the dot product of the two vectors. ∥𝐴∥ and ∥𝐵∥ is the
Euclidean norm of the vector.

4.4 Experimental Setup
We set the following parameters to fine-tune the BERT model:

hidden size is 768, and the number of attention layers is 12. All pa-

rameters are optimized using Adam, and the initial learning rate is

set to 0.001. During training, the batch size is set to 64, and the max-

imum length of the encoder is set to 512. To optimize cost efficiency

when using ChatGPT, we implemented a limit on the maximum

number of runs per bug report. Specifically, for each incomplete bug

report, we allowed up to five separate runs of ChatGPT to generate

the desired output. Each run represents a new dialogue initiated

with ChatGPT, providing a fresh attempt to produce the required

information. To ensure fairness and reliability in our results, we

repeated this entire process for five rounds across all experiments.

All experiments are performed on a 32G RAM Intel(R) Xeon(R)

Gold 5318Y CPU@2.10GHz and an NVIDIA A30 GPU. Besides, we

use the OpenAI API to interact with GPT-3.5-turbo in our experi-

ments.

5 EXPERIMENTAL RESULTS
5.1 RQ1: How effective is ChatBR’s detector in

identifying missing information?

Table 2: Performance ofChatBR andBEE in detectingmissing
information of bug reports

Approach Element Precision Accuracy Recall F1-Score

BEE

OB 0.7260 0.9470 0.8790 0.7956

EB 0.7000 0.9920 0.9840 0.8163

S2R 0.7200 0.9740 0.9080 0.8049

ChatBR (without DA)

OB 0.7400 0.9344 0.7201 0.7300

EB 0.7346 0.9862 0.7022 0.7180

S2R 0.7886 0.9564 0.6986 0.7409

ChatBR

OB 0.9798 0.9835 0.9873 0.9835

EB 0.9920 0.9966 0.9984 0.9952

S2R 0.9817 0.9900 0.9914 0.9982

Table 2 illustrates the performance of ChatBR and BEE in detect-

ing missing information in bug reports. The table is divided into

three sections, presenting the performance of BEE, ChatBR without

data augmentation, and ChatBR with data augmentation.
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Overall, ChatBR demonstrates superior performance across all

metrics—precision, accuracy, recall, and F1-score—compared to BEE

for different types of missing elements. Notably, ChatBR improves

precision by 25.38%, 29.20%, and 26.17% for OB, EB, and S2R infor-

mation, respectively. Remarkably, even without data augmentation,

ChatBR’s performance is competitive with BEE’s optimal results.

This significant improvement can be attributed to the choice

of the pre-trained BERT model. Previous research has shown that

transformer-based pre-trained models excel at capturing intrin-

sic semantic relationships between texts [1, 16]. In contrast, the

approach of converting a multi-label classification task into mul-

tiple binary classification tasks, as employed by BEE, potentially

overlooks the inherent relationships between internal features of

multi-label samples [44].

Furthermore, the superior performance of ChatBR with data aug-

mentation, compared to both its non-augmented version and BEE

(which uses a different data augmentation strategy), underscores

the effectiveness of ChatBR’s data augmentation operations. Our

augmentation techniques are more targeted and domain-specific

than those used in BEE.

In conclusion, the combination of fine-tuning BERT on a bal-

anced dataset achieved through our targeted data augmentation

significantly enhances ChatBR’s effectiveness in detecting missing

information in bug reports.

5.2 RQ2: How effective is ChatBR’s generator in
generating missing information?

5.2.1 RQ2.1 How does the number ofmissing elements affect ChatBR’s
effectiveness? Figure 3 illustrates the semantic similarity between

ChatGPT-generated information and original information for bug

reports with varying numbers of missing elements. Red triangles

represent results for bug reports missing one element, while blue

triangles indicate those missing two elements. For example, in the

OB line, the red point shows the semantic similarity score between

generated and original OB information for bug reports missing only

OB. The blue point represents the average semantic similarity score

for bug reports missing two elements, including those lacking both

OB and EB, and those missing both OB and S2R.

Overall, ChatGPT generates missing information with high se-

mantic similarity scores (0.7841 on average) to the original bug

reports when one element is missing. There are slight differences

among the six software projects. However, missing one element

consistently results in higher semantic similarity between gener-

ated and original bug reports compared to missing two elements

(i.e., any two of OB, EB, and S2R), as evidenced by the red trian-

gles appearing outside the blue ones. This suggests that missing

more elements may significantly affect ChatGPT’s effectiveness.

For instance, in the SWT project, compared to bug reports missing

only one element, those missing any two elements show decreased

semantic similarity scores from 0.8040, 0.8025, and 0.7725 to 0.7942,

0.7865, and 0.7611, respectively.

5.2.2 RQ2.2 How does the type of missing elements affect ChatBR’s
effectiveness? Table 3 presents the semantic similarity between

ChatGPT-generated elements and original elements for bug reports

with varying types of missing elements across six software projects.

The first column lists various scenarios for generating OB, EB, and

 

Figure 3: Semantic similarity between ChatGPT-generated
information and original information for bug reports with
varying numbers of missing elements

S2R using ChatGPT. For instance, the "OB" row shows the semantic

similarity between the generated and original OB when only OB is

missing. The "OB_EB(OB)" row indicates the semantic similarity

between the generated and original OB when both OB and EB are

missing.

Table 3: Semantic similarity between ChatGPT-generated
missing elements and original elements for bug reports with
varying types of missing elements

Scenario AspectJ Birt Eclipse JDT SWT Tomcat
OB 0.7661 0.7822 0.7938 0.7952 0.8040 0.8061

OB_EB(OB) 0.7535 0.7772 0.7872 0.7842 0.7950 0.7964

OB_S2R(OB) 0.7541 0.7729 0.7801 0.7805 0.7835 0.7850

OB(avg) 0.7579 0.7774 0.7870 0.7867 0.7942 0.7958

EB 0.8207 0.7844 0.7938 0.7992 0.8025 0.8019

OB_EB(EB) 0.8149 0.7714 0.7837 0.7817 0.7833 0.7815

EB_S2R(EB) 0.8110 0.7718 0.7813 0.7872 0.7896 0.7899

EB(avg) 0.8155 0.7758 0.7863 0.7894 0.7918 0.7911

S2R 0.7530 0.7393 0.7642 0.7629 0.7725 0.7720

OB_S2R(S2R) 0.7429 0.7336 0.7500 0.7510 0.7574 0.7574

EB_S2R(S2R) 0.7440 0.7276 0.7547 0.7563 0.7649 0.7654

S2R(avg) 0.7466 0.7335 0.7563 0.7568 0.7650 0.7649

The data reveals that EB achieves the highest average seman-

tic similarity (0.7917), followed by OB (0.7832) and S2R (0.7538).

This suggests that OB and EB are relatively easier for ChatGPT to

generate, while S2R presents the greatest challenge. Two factors
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contribute to the ease of generating OB and EB: (1) OB and EB typi-

cally express opposite meanings in bug reports, allowing inference

from one to the other; (2) S2R, which describes user actions when

discovering a bug, often implies OB and EB, aiding ChatGPT in

their generation. Conversely, S2R generation is more difficult due

to: (1) the limited training of most LLMs on software bug reports,

resulting in better performance on generic tasks but poorer results

on bug report generation; (2) the complexity and diversity of soft-

ware usage scenarios, which complicate accurate reasoning about

user actions.

Interestingly, ChatGPT’s effectiveness in generating elements

varies across software projects. For example, the semantic similarity

of generated OB ranges from 0.7661 for AspectJ to 0.8061 for SWT.

5.3 RQ3: How efficient is ChatBR in generating
missing information?

5.3.1 RQ 3.1: How does the number of missing information affect
ChatBR’s efficiency? Figure 4 illustrates the number of ChatGPT

runs required to generate missing information for bug reports lack-

ing one or two elements in a 5-round experiment. The x-axis rep-

resents the number of ChatGPT runs, with a maximum of 5. The

y-axis shows the number of bug reports for which ChatGPT suc-

cessfully generated missing information. Note that the total number

of bug reports is 435 (87× 5 = 435) due to the 5-round experimental

design.

Figure 4: Number of ChatGPT runs required to generatemiss-
ing information for bug reports with one or two absent ele-
ments

The results demonstrate that ChatBR can generate missing infor-

mation for 99.62% of bug reports missing one element within three

ChatGPT runs. Moreover, ChatBR successfully generates missing in-

formation for approximately 76.93% of these bug reports in a single

run. For bug reports missing two elements, ChatBR generates the

missing information for 97.93% within three runs, a slight decrease

of 1.69% compared to the single-element case. Additionally, ChatBR

generates missing information for about 68.81% of two-element

missing reports in a single run, an 8.12% decrease compared to the

single-element scenario. These findings indicate that as the number

of missing elements in bug reports increases, more ChatGPT runs

are required to generate the missing information. In other words,

when more information is absent from bug reports, ChatGPT has

less context to work with, which impacts ChatBR’s efficiency.

5.3.2 RQ3.2: How does the type ofmissing information affect ChatBR’s
efficiency? Figure 5 illustrates the proportion of bug reports im-

proved by ChatBR after a single ChatGPT run for various missing

element types. Figure 5(a) presents results for bug reports missing

one element type, while Figure 5(b) shows results for those miss-

ing two element types. The x-axis represents different software

projects, and the y-axis indicates the proportion of improved bug

reports.

Figure 5: Proportion of bug reports enhanced by ChatBR
using a single ChatGPT run, categorized by missing element
types

Figure 5(a) reveals that, overall, the proportion of improved bug

reports missing EB is lower than those missing OB or S2R. This

suggests that ChatBR faces greater challenges in generating EBwith

a single ChatGPT run compared to OB and S2R. In other words, for

bug reports missing only one element, absent EB information has

the most significant impact on ChatBR’s efficiency. Additionally,

the number of ChatGPT runs required to generate different element

types varies within the same software project. For instance, in the

SWT project, the proportions of missing OB, EB, and S2R that can be

generated by a single ChatGPT run are 87.69%, 76.92%, and 84.62%,

respectively.

Figure 5(b) demonstrates that the proportion of improved bug

reports missing both EB and S2R is the lowest, followed by those

missing both OB and EB. Bug reports missing both OB and S2R

show the highest proportion of improvement. This indicates that

for bug reports missing two elements, the absence of both EB and

S2R has the most substantial impact on ChatBR’s efficiency.
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5.4 RQ4: How do different prompts affect the
generation results?

Listings 5 and 6 present the basic Prompt Template 1 and the im-

proved Prompt Template 2, respectively. Prompt Template 1 suc-

cinctly outlines the tasks, requirements, and expected output format

for ChatGPT. Prompt Template 2 builds upon this foundation by

assigning ChatGPT the role of a senior software engineer adept at

writing and modifying bug reports, aligning with our task of bug

report quality improvement.

Listing 5: Prompt Template 1
Prompt Template 1:
− Your task is to infer the appropriate details based on the

context and supplement the bug report to ensure it contains

clear and complete OB(Observed Behavior), EB(Expected

Behavior) , and S2R(Steps to Reproduce) sentences . Also,

improve the wording of these sentences for clarity where

possible .

− Respond in JSON format as follows :

{" id ": "", " title ": "", " description ": "", "OB": "", "EB": "", "

S2R": ""}

<BUG REPORT>...</BUG REPORT>

Listing 6: Prompt Template 2
Prompt Template 2:
− Your role is a senior software engineer , and you are very good

at analyzing and writing bug reports . The bug report may lack

sufficient details in the OB(Observed Behavior), EB(Expected

Behavior) , and S2R(Steps to Reproduce).

− Your task is to infer the appropriate details based on the

context and supplement the bug report to ensure it contains

clear and complete OB/EB/S2R sentences. Also, improve the

wording of these sentences for clarity where possible .

− Respond in JSON format as follows :

{" id ": "", " title ": "", " description ": "", "OB": "", "EB": "", "

S2R": ""}

<BUG REPORT>...</BUG REPORT>

The final prompt template, shown in Listing 4, incorporates best

practices for ChatGPT usage and includes definitions of OB, EB,

and S2R based on Prompt Template 2. These additions aim to en-

hance ChatGPT’s understanding of crucial information, potentially

leading to improved results.

Figure 6 illustrates the effectiveness of these prompt templates in

terms of semantic similarity between generated and original infor-

mation. The orange, green, and purple polylines represent Prompt

Template 1, Prompt Template 2, and the final prompt template,

respectively. Across all six software projects, the purple polyline

consistently appears above the others, demonstrating the superior

performance of the final prompt template. This suggests that pro-

viding specific definitions of OB, EB, and S2R enables ChatGPT to

better understand its task and generate results more closely aligned

with the ground truth.

Figure 6: Effectiveness of different prompts

Table 4 compares the efficiency of different prompt templates

by measuring the number of ChatGPT runs required. These results

are aggregated from 5-round experiments, with "𝑟𝑛, 𝑛 ∈ {1, 2..., 5}"
representing the total number of ChatGPT runs for each prompt.

The final prompt template consistently achieves the desired output

within three runs, while Prompt Template 1 and Prompt Template

2 often require up to five runs. Notably, for the AspectJ project, the

final prompt template generates the missing information in just

two runs. Prompt Template 2 shows a slight improvement over

Prompt Template 1, as evidenced by its ability to generate missing

information within three runs for the Tomcat project.

5.5 RQ5: How effective is ChatGPT compared
with other LLMs?

Table 5 compares the effectiveness of ChatGPT with two other

LLMs, Llama2-7B and Vicuna-7B, in terms of semantic similarity

between generated and original information. For each project, the

table presents semantic similarity scores for scenarios where one

element (Columns 3-5) or two elements (Columns 6-11) are miss-

ing. Specifically, column 6 shows the semantic similarity between

generated and original OB when both OB and EB are missing.
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Table 4: Efficiency of different prompts

Project Scenario Prompt Template 1 Prompt Template 2 Final Prompt Template

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

AspectJ

OB 17 2 0 1 0 18 2 0 0 0 20 0 0 0 0

EB 14 4 0 0 2 14 4 1 0 1 15 5 0 0 0

S2R 12 5 2 0 1 15 5 0 0 0 20 0 0 0 0

OB_EB 15 4 1 0 0 18 1 1 0 0 18 2 0 0 0

OB_S2R 15 4 0 0 1 17 1 1 1 0 17 3 0 0 0

EB_S2R 9 2 3 4 2 14 1 0 0 5 15 5 0 0 0

Birt

OB 114 18 8 1 4 127 14 3 1 0 110 30 5 0 0

EB 89 22 13 7 14 93 20 10 5 17 85 34 23 3 0

S2R 95 28 9 5 8 119 17 5 2 2 119 24 2 0 0

OB_EB 103 27 11 1 3 126 15 2 1 1 75 41 23 4 2

OB_S2R 103 26 11 4 1 123 16 4 2 0 101 32 10 1 1

EB_S2R 78 33 10 6 18 79 29 11 11 15 76 32 31 4 2

Eclipse

OB 62 11 1 0 1 67 7 0 0 1 60 13 2 0 0

EB 44 17 6 2 6 52 7 9 3 4 43 20 12 0 0

S2R 53 12 6 3 1 63 8 4 0 0 59 13 2 1 0

OB_EB 54 15 1 4 1 67 3 4 1 0 56 12 7 0 0

OB_S2R 66 9 0 0 0 69 5 0 1 0 65 8 2 0 0

EB_S2R 38 14 5 6 12 51 14 4 5 1 49 16 8 2 0

JDT

OB 86 17 1 1 0 94 10 1 0 0 87 15 3 0 0

EB 65 29 4 2 5 76 16 4 2 7 74 20 11 0 0

S2R 71 16 4 3 11 91 9 4 1 0 85 15 5 0 0

OB_EB 82 20 2 0 1 90 14 1 0 0 67 23 14 1 0

OB_S2R 92 7 4 1 1 93 12 0 0 0 81 15 9 0 0

EB_S2R 52 30 8 3 12 67 15 6 3 14 67 18 12 7 1

SWT

OB 55 10 0 0 0 60 5 0 0 0 57 8 0 0 0

EB 43 10 5 2 5 50 11 1 2 1 50 8 6 1 0

S2R 47 10 3 1 4 56 5 3 1 0 55 9 1 0 0

OB_EB 57 8 0 0 0 57 7 1 0 0 56 9 0 0 0

OB_S2R 55 7 2 0 1 59 5 1 0 0 58 7 0 0 0

EB_S2R 37 13 5 0 10 51 9 4 0 1 39 13 11 2 0

Tomcat

OB 22 1 2 0 0 25 0 0 0 0 25 0 0 0 0

EB 16 5 2 2 0 17 6 2 0 0 19 5 1 0 0

S2R 13 3 1 1 7 24 1 0 0 0 21 3 1 0 0

OB_EB 18 3 2 1 1 20 5 0 0 0 20 5 0 0 0

OB_S2R 23 1 0 1 0 23 1 1 0 0 20 4 1 0 0

EB_S2R 14 6 1 2 2 16 7 2 0 0 18 3 4 0 0

*Note: "r𝑛" is the abbreviation of "run 𝑛 times"

Table 5: Effectiveness of different LLMs

LLM Project OB EB S2R OB_EB OB_S2R EB_S2R

OB EB OB S2R EB S2R

Llama2-7B

AspectJ 0.0847 0.0000 0.0419 0.0264 0.0382 0.0282 0.0422 0.0000 0.0000

Birt 0.1685 0.0527 0.0808 0.0770 0.0867 0.0298 0.0325 0.0399 0.0292

Eclipse 0.1748 0.0309 0.0669 0.0790 0.0731 0.0557 0.0510 0.0000 0.0000

JDT 0.1036 0.1071 0.0547 0.0652 0.0549 0.0177 0.0158 0.0237 0.0250

SWT 0.1762 0.0738 0.1613 0.0761 0.0736 0.0438 0.0409 0.1213 0.1186

Tomcat 0.2474 0.0400 0.0000 0.1974 0.1831 0.1372 0.1435 0.1580 0.1580

Vicuna-7B

AspectJ 0.1505 0.0000 0.0000 0.2387 0.2225 0.0000 0.0000 0.2197 0.1744

Birt 0.3403 0.2056 0.0971 0.3182 0.2850 0.3811 0.3490 0.1848 0.1771

Eclipse 0.4179 0.1611 0.0000 0.3723 0.3806 0.2469 0.2503 0.2657 0.2730

JDT 0.2448 0.1437 0.0274 0.3452 0.3062 0.1629 0.1245 0.1527 0.1390

SWT 0.3339 0.1704 0.0581 0.4331 0.3658 0.0676 0.0595 0.3084 0.2977

Tomcat 0.1732 0.1474 0.0000 0.3068 0.3037 0.0000 0.0000 0.1567 0.1631

ChatGPT

AspectJ 0.7661 0.8207 0.7530 0.7535 0.8149 0.7541 0.7429 0.8110 0.7440

Birt 0.7822 0.7844 0.7393 0.7772 0.7714 0.7729 0.7336 0.7718 0.7276

Eclipse 0.7938 0.7938 0.7642 0.7872 0.7837 0.7801 0.7500 0.7813 0.7547

JDT 0.7952 0.7992 0.7629 0.7842 0.7817 0.7805 0.7510 0.7872 0.7563

SWT 0.8040 0.8025 0.7725 0.7950 0.7833 0.7835 0.7574 0.7896 0.7649

Tomcat 0.8061 0.8019 0.7720 0.7964 0.7815 0.7850 0.7574 0.7899 0.7654

ChatGPT significantly outperforms both Llama2-7B andVicuna-

7B. The maximum semantic similarity score for ChatGPT-generated

information reaches 0.8207, compared to 0.2474 for Llama2-7B and

0.4179 for Vicuna-7B. Upon closer examination, we found that the

outputs from Vicuna-7B and Llama2-7B often deviate from the

required JSON format specified in the prompts. Moreover, some of

their outputs merely replicate the input prompts. We hypothesize

that the inferior performance of Vicuna-7B and Llama2-7B may

be attributed to their smaller model sizes, which likely impede their

ability to effectively process and respond to complex bug reports.

6 THREATS TO VALIDITY
Internal Threats. Internal threats to our study relate to the data

leakage of ChatGPT. However, there is no result that the gener-

ated information is the same as the original information in our

experiment. This indicates that ChatGPT does not rely only on the

memory for the training data. In fact, ChatGPT has a strong rea-

soning ability based on the relevant project information in similar

domains or target projects. It can reason out the missing informa-

tion related to bug reports accurately. In fact, fine-tuning LLMs

can further improve the effectiveness and efficiency of generating

missing information, which has been studied in other fields [22, 38].

External Threats. The main external threat to our study is the

generality of ChatBR. Our experiment is conducted on a dataset of

bug reports from six publicly available software projects. The limi-

tation of the research domain and types of bug reports may affect

the effectiveness of bug report assessment and improvement, espe-

cially for specific types of bug reports. Nevertheless, our approach

is generic and can be extended to other software projects.

7 RELATEDWORK
7.1 Assessing Bug Report Quality
The quality of bug reports has a great impact on a series of software

testing activities, such as bug localization and bug fixing. Thus,

there have been some studies on bug report quality assessment.

Most of them utilize Machine Learning (ML) or heuristic rules to

classify the quality of bug reports by extracting all kinds of met-

rics related to bug reports. Fan et al. [17] extracted features from

5 dimensions (i.e., the reporter experience, collaboration network,

completeness, readability, and text) and used a random forest classi-

fier to identify valid bug reports. Zimmermann et al. [53] designed

CUEZILLA, a prototype tool to assess bug report quality by select-

ing the information that the bug fixer expects the user to provide as

features and using supervised machine learning algorithms to train

a prediction model. Besides, it provides recommendations to bug

reporters to make better bug reports. Different from CUEZILLA,

Karim et al. [25] built and assessed classification models using four

different text classification techniques to predict key features from

historical bug-fixing knowledge. Chaparro et al. [9] developed three

versions of DeMIBuD using regular expressions, heuristic rules and

Natural Language Processing (NLP), and Machine Learning (ML) to

detect missing OB, EB, and S2R elements automatically. Unlike the

above approaches, we assess the quality of bug reports by detecting

the absence of crucial information in bug reports using a fine-tuned

BERT pre-trained model. The goal of this strategy is to leverage

the performance and advanced features of BERT to improve the

efficiency and effectiveness of bug report quality assessment.

7.2 Improving Bug Report Quality
Existing works on improving the quality of bug reports mainly

focus on improving or adding crucial information entries, such as

replication steps, execution trajectories, and problem descriptions.

Feng et al. [18] proposed AdbGPT, which makes use of few-shot

and Chain of Thought (CoT) [41] to generate S2Rs in a developer-

like manner by feeding XML textual information into LLMs. Zhao

et al. [50] proposed ReCDroid+ based on the previous ReCDroid,

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

ChatBR: Automated Assessment and Improvement of Bug Report Quality Using ChatGPT ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

which employed an HTML parser [31], CNN (Convolutional Neural

Network) [26], and LSTM (Long Short-Term Memory Network)

[19] to extract crashes and S2R sentences. In addition, improving

the bug report title has attracted much attention from researchers.

For example, Chen et al. [12] proposed iTAPE, which utilizes an

approach based on the Seq2Seq model [37] to generate report titles.

Zhang et al. [47] proposed to generate titles for bug reports by fine-

tuning the BART [28] model. Different from the above approaches,

our approach is to improve the quality of reports by generating

the missing crucial information in bug reports based on existing

information and predefined prompt templates. The goal of this

strategy is to leverage the outperforming capacity of ChatGPT for

understanding and generating natural language text that is special

to our task and requirement.

8 CONCLUSION
In this work, we focus on using ChatGPT to improve the quality of

bug reports. Given the cost limitation of using ChatGPT, we aim

to minimize the number of ChatGPT runs by assessing the quality

of bug reports accurately. We propose ChatBR, a two-step strategy

to improve the quality of bug reports that combines a pre-trained

model and ChatGPT to generate missing OB, EB, and S2R infor-

mation. The experimental results show that ChatBR significantly

outperforms the baseline method in assessing bug report quality,

showing an improvement of 25.38% to 29.20% in precision. In the

task of generating missing information, ChatBR achieves an aver-

age semantic similarity of 77.62% between the generated content

and the original information across six diverse real-world software

projects.

In the future, we plan to conduct a survey with expert developers

to further explore the reliability and validity of ChatBR for other

downstream tasks, e.g., bug localization [6, 33], bug fixing [52],

and duplicate bug report detection [46, 48]. In addition, we plan to

investigate the performance of LLMs in improving the quality of

bug reports in the few-shot and CoT settings.
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