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ABSTRACT
Prior studies have demonstrated that approaches to generate an
answer summary for a given technical query in Software Ques-
tion and Answer (SQA) sites are desired. We find that existing
approaches are assessed solely through user studies. Hence, a new
user study needs to be performed every time a new approach is
introduced; this is time-consuming, slows down the development
of the new approach, and results from different user studies may
not be comparable to each other. There is a need for a benchmark
with ground truth summaries as a complement assessment through
user studies. Unfortunately, such a benchmark is non-existent for
answer summarization for technical queries from SQA sites.

To fill the gap, we manually construct a high-quality benchmark
to enable automatic evaluation of answer summarization for the
technical queries for SQA sites. It contains 111 query-summary pairs
extracted from 382 Stack Overflow answers with 2,014 sentence
candidates. Using the benchmark, we comprehensively evaluate
the performance of existing approaches and find that there is still a
big room for improvements.

Motivated by the results, we propose a new approach Tech-
SumBot with three key modules:1) Usefulness Ranking module; 2)
Centrality Estimation module; and 3) Redundancy Removal mod-
ule. We evaluate TechSumBot in both automatic (i.e., using our
benchmark) and manual (i.e., via a user study) manners. The results
from both evaluations consistently demonstrate that TechSum-
Bot outperforms the best performing baseline approaches from
both SE and NLP domains by a large margin, i.e., 10.83%–14.90%,
32.75%–36.59%, and 12.61%–17.54%, in terms of ROUGE-1, ROUGE-
2, and ROUGE-L on automatic evaluation, and 5.79%–9.23% and
17.03%–17.68%, in terms of average usefulness and diversity score
on human evaluation. This highlights that automatic evaluation
on our benchmark can uncover findings similar to the ones found
through user studies. More importantly, the automatic evaluation
has a much lower cost, especially when it is used to assess a new
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approach. Additionally, we also conducted an ablation study, which
demonstrates that each module in TechSumBot contributes to
boosting the overall performance of TechSumBot. We release the
benchmark as well as the replication package of our experiment at
https://github.com/TechSumBot/TechSumBot.
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1 INTRODUCTION
Online software question and answer (SQA) forums are becoming
an integral part of software engineering. As the Stack Overflow
community flourishes, the platform has around 23 million existing
answers as of May 2022, making it a valuable software engineering
resource.1 Developers often rely on Stack Overflow to acquire soft-
ware knowledge, such as learning API usage, fixing bugs, and dis-
covering trends in development technologies [24, 28, 36, 38, 41, 43]
by searching from a massive collection of existing answers. Un-
fortunately, multiple works (e.g., [21, 41]) have demonstrated that
developers suffer from the ineffective and time-consuming answer
searching process for their technical queries due to useless, re-
dundant, and incomplete information returned by existing search
engines.

Several studies have been proposed to help developers capture de-
sired online information more accurately and succinctly by propos-
ing query-focused summarization approaches [28, 36, 37, 39, 41] –
this task is often referred to as answer summarization for technical
questions. The closest work is proposed by Xu et al. [41], who pro-
posed the latest Stack Overflow answer summarization approach
named AnswerBot for technical queries. The problem is formulated
as a query-focused extractive summarization problem, i.e., selecting
1https://stackexchange.com/sites?view=list#traffic
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an optimal subset of k sentences from multiple answers to form a
summary to answer the target technical query.

However, we find that the work carries a major limitation on the
evaluation. Both AnswerBot and its considered baseline approaches
are evaluated only in a manual manner through user studies. Al-
though user studies can simulate the realistic usage environment
of the approaches, it carries two drawbacks at the same time. First,
user studies are usually expensive in terms of time cost and human
resources. It requires a long period of time for preparation, labeling,
and human feedback collection. Second, the user study needs to
be repeated every time a new approach is introduced. Aside from
slowing down the development of new approaches, it also raises
fairness issues. To ensure a fair comparison, a user study on all the
considered approaches requires to be done under a similar evalu-
ation setting. However, this fairness constraint is hard to enforce
for a series of user studies that evaluate different newly proposed
approaches. Such user studies are often performed with different
groups of participants and different sets of technical questions.

To mitigate the aforementioned limitations of user studies, auto-
matic evaluation through a benchmark is in need as it can be a good
complement. After the initial investment to set up a benchmark,
future studies can reuse it to evaluate new approaches in an identi-
cal evaluation setting to produce easily repeatable results. For the
answer summarization for technical questions task, a benchmark
ideally consists of a set of triplets in which each triplet contains a
technical query Q , a set of answers Ans , and ground truth answer
summaries S with respect to the query, i.e., Bench = {⟨Q, S,Ans⟩}.
Such a benchmark is often constructed for various summariza-
tion tasks in the Natural Language Processing (NLP) field, e.g.,
CNN/Daily Mail[30], GigaWord [31] and DUC–2005[7]. However,
no such benchmark exists for our task considering SQA sites.

Motivated by this, we conduct the first Stack Overflow query-
focused multi-answer summarization benchmark TechSumBench
(described in Section 2). Table 1 demonstrates an example pair of a
technical query and its corresponding answer summary.
Table 1: Example answer summary in TechSumBenchwith
respect to a technical query.
Technical Query: Difference between Spring MVC and
Spring Boot
Ground Truth Summary in TechSumBench:
1. ⟨ Spring MVC is a sub-project of the Spring Framework,
targeting design and development of applications that use the
MVC (Model-View-Controller) pattern.⟩
2. ⟨ Spring boot is a utility for setting up applications quickly,
offering an out of the box configuration in order to build Spring-
powered applications.⟩
3. ⟨ Spring boot = Spring MVC + Auto Configuration(Don’t
need to write spring.xml file for configurations) + Server(You
can have embedded Tomcat, Netty, Jetty server).⟩
4. ⟨ Spring MVC framework is module of spring which provide
facility HTTP oriented web application development.⟩
5. ⟨ So, Spring MVC is a framework to be used in web appli-
cations and Spring Boot is a Spring based production-ready
project initializer.⟩
TechSumBench enables us to fairly compare query-focused sum-

marization approaches proposed in the software engineering and

NLP fields in an identical evaluation setting and in a repeatable man-
ner. We have used TechSumBench to investigate four approaches
(i.e., AnswerBot [41], LexRank [9], Biased-TextRank [17], Query-
Sum [42]) and find that QuerySum performs the best, but there is
still a big room for improvement. Furthermore, we performed a
qualitative analysis to seek the reason for the poor performance of
these approaches (described in Section 6.1) and summarized two
key findings. First, the handcrafted features considered in the ex-
isting approaches have limitations. For example, one handcrafted
feature in AnswerBot (e.g., semantic patterns) uses 12 patterns to in-
dicate the importance of answer sentences, e.g., check if a sentence
contains the string “I suggest that...”. Such a semantic pattern is not
versatile enough to capture the semantics of questions and answer
sentences. Second, when removing redundancy from a set of sen-
tences, we find that sentence representation plays an important
role in determining the semantic relatedness between sentences.

To better tackle the problem, we propose TechSumBot (de-
scribed in Section 3), a new query-focused answer summarization
approach with three core modules: 1) Usefulness Ranking; 2) Cen-
trality Estimation; 3) Redundancy Removal. Correspondingly, they
take into consideration 1) the usefulness of each answer sentence
with respect to the query, 2) sentence centrality among all candi-
dates, and 3) semantic similarity between sentences. In the Useful-
ness Ranking module, we rank the usefulness of each sentence to
the query by leveraging a transfer learning-based pre-trained Trans-
former model. In the Centrality Estimation module, we re-rank the
sentence by estimating the central sentences among all candidates.
Finally, in the Redundancy Removal module, we remove redundant
sentences by applying a greedy selection mechanism, in which we
leverage a SE domain sentence representationmodel to calculate the
similarity between sentences. Particularly, as no existing dataset
in SE domain can be directly used for supervising the sentence
representation model, we carefully observe the characteristic of
Stack Overflow data and create an in-domain sentence relationship
dataset by leveraging the semantics inferred from duplicate ques-
tion links and tags information; both of them are manually labeled
by Stack Overflow users in a high-standard mechanism. Then we
use our in-domain sentence relationship dataset to enhance the
state-of-the-art contrastive learning-based sentence representation
model SIMCSE [12].

To facilitate a comprehensive evaluation of TechSumBot, we
conduct an automatic evaluation using TechSumBench and a user
study. The automatic evaluation results show that TechSumBot
substantially outperforms the best performing baselines in both
SE and NLP fields by 10.83%–14.90%, 32.75%–36.59%, and 12.61%–
17.54% in terms of ROUGE-1, ROUGE-2, and ROUGE-L, respectively.
The result of the user study is consistent with the result of the
automatic evaluation: TechSumBot substantially outperforms the
best performing baseline by 5.79%–9.23%, 17.03%–17.68% in terms
of average usefulness and diversity scores. Besides, an ablation
study is performed and its result demonstrates that each module
complementarily contributes to the overall performance.

The main contributions of this paper are the following:
• We construct the first summarization benchmark named Tech-
SumBench for answer summarization of technical queries in
SQA sites. The benchmark can be used to automatically evaluate
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future proposed summarization methods in an identical setting
and a repeatable manner.

• We comprehensively evaluate four query-focused summarization
approaches from both SE and NLP fields using our benchmark.
The experiments highlight the limitations of the approaches and
indicate a room for improvement.

• We propose TechSumBot, a novel query-focused answer summa-
rization approach with three modules to better solve the problem.

• We evaluate the performance of TechSumBot via both auto-
matic evaluation and user study. The results of both evaluations
demonstrate that TechSumBot outperforms the best performing
baselines by a large margin.

• We release the benchmark, as well as the replication package of
TechSumBot to facilitate future work.
The rest of this paper is structured as follows. Section 2 describes

the benchmark construction. Section 3 presents the framework of
our proposed TechSumBot. Section 4 introduces the baselines and
metrics for automatic evaluation. Section 5 analyzes the experiment
result. Section 6 discusses the qualitative analysis and threats to
validity. Section 7 surveys the related work. Section 8 concludes
our work and presents our future plan.

2 BENCHMARK
We present TechSumBench, the first Stack Overflow multi-answer
summarization benchmark for answering a specific technical ques-
tion. Figure 1 describes our benchmark construction process. We
firstly automatically collect annotation units, which is then followed
by the data cleaning process described in Section 2.1. An annotation
unit consists of a technical question and multiple relevant answers.
Next, six annotators perform a two-phase labeling process: useful
sentence selection and summary generation as explained in Sec-
tion 2.2. Note that we perform an iterative guideline refinement for
the useful sentence selection task until the inter-annotator agree-
ment achieves a certain level as described in Section 2.2.1.

2.1 Data Collection
We prepare 50 annotation units (i.e., technical query and multiple
relevant answers) by performing automatic data extraction and
data cleaning.

2.1.1 Automatic Data Preparation. The PostLinks table in
Stack Overflow data dump2 contains the information of user-voted
duplicated question links, in which each original question is linked
to their duplicated questions. Specifically, an original question refers
to the earliest published Stack Overflow question that is a duplicate
of newer questions. The duplicate questions3 are manually marked
by following a strict mechanism that one moderator or at least three
active users (i.e., users who have over 3,000 reputation score) vote
the questions to be a duplicate to the original one. In particular, we
treat the title of the original question as the technical question of
each annotation unit in TechSumBench. As the Stack Overflow
questions with ‘duplicate’ links are labeled by reputable Stack Over-
flow users, we regard all the answers to the original question and
their duplicates as the relevant answers of the technical question
in the corresponding annotation unit.
2https://archive.org/details/stackexchange
3https://stackoverflow.com/help/duplicates

To prepare the labeling materials, we randomly extract 50 an-
notation units from the PostLinks table in Stack Overflow data
dump. We focus on questions related to two popular programming
languages, Python and Java, by checking if they are tagged with
‘Java’ or ‘Python’. Following AnswerBot [41], we only consider the
technical questions in which the sum of the number of answers is
between 10 to 15. We discard answers with no vote as their use-
fulness to the technical question is unclear or considered as bad
by Stack Overflow users. As we focus on the text summarization,
answers that only contain code snippets without text content are
also dropped.
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Figure 1: Benchmark Construction

2.1.2 DataCleaning. Wepre-process the 50 annotation units.We
use NLTK4 to break each text content into sentences. We then apply
some heuristics to reduce noise. We exclude sentences that consist
of only an external hyperlink since the hyperlink content is not
directly visible. For sentences that consist of both hyperlinks and
text content, we keep the text content and replace the hyperlinks
with a place holder (i.e., ‘[external-link]’). We also replace the code
snippet, table and pictures in answers with place holders (i.e., ‘[code-
snippet]’, ‘[table]’, ‘[figure]’). Additionally, we observe that the
inline code is important for annotators to understand the sentence
meanings. Therefore, we keep the inline code. Furthermore, we treat
multi-level headings which is more than five words in answers
as individual sentences as we observe that they are frequently
summative sentences. Finally, each annotation unit after the above
pre-processing serves as the labeling materials.

2.2 Labeling Process
Firstly we prepare labeling materials for annotators to get ready
for the labeling process. We present the content of each annotation
unit into a text file that contains the technical question, sentences
from each answer, Stack Overflow hyperlinks to each answer, and
a blank section for labeling. Each answer sentence is assigned with
a unique identifier based on its source answer and the sentence
order in the source answer. For example, the fourth sentence in the

4https://www.nltk.org/api/nltk.tokenize.html

https://archive.org/details/stackexchange
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third answer of the annotation unit is assigned with the identifier
#03_04. We also provide the guideline.

Then we follow a two-phase labeling process that is commonly
used in NLP studies [1, 2]. Six annotators are involved in the labeling
process. All participants are PhD students and have at least two
years of development experience in Java and Python programming
languages. In each phase, annotators and labeling materials are
divided equally into two groups. Three participants in one group
label the same group of labeling materials. The goal of the labeling
process is to select summative sentences from multiple answers to
form a brief summary of answers to a technical question. To achieve
this, in the first phase (i.e., useful sentence selection), three annotators
select the useful sentences from all relevant answers. The sentences
that all annotators agreed to be useful for answering the technical
question serve as the input of the second phase (i.e., summary
generation). In the summary generation phase, three annotators are
asked to select five sentences that will form an extractive summary
based on the sentences’ clarity, redundancy and importance. In
prior summarization works from NLP field, it is common to select a
fixed number of sentences [22, 32, 47] , e.g., five sentences [32, 47],
as the summary.
2.2.1 Phase 1: Useful Sentence Selection. In this labeling stage,
annotators are required to identify the useful sentences for answer-
ing the technical question from multiple Stack Overflow answers.
The labeling objective is formulated as a binary classification that
specifies sentence usefulness to the technical question. Annotators
label the sentences for answering the technical question as either
‘useful’ or ‘not-useful’. Sentences are labeled as ‘?’ when annota-
tors are unsure whether the sentences are useful to answer the
question. Note that we do not consider the redundancy among sen-
tences in this phase. In particular, we use the Kappa coefficient [6]
to measure the inter-annotator agreement. A higher kappa value
illustrates a higher agreement level among annotators. We follow
prior studies [16, 19, 26] to interpret the meaning of Kappa value:
kappa values 0 as poor agreement, 0.01–0.20 as slight agreement,
0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial,
and 0.81–1.00 as almost perfect agreement.
Iterative Guideline Refinement To ensure the quality of the se-
lected useful sentences, we performed an iterative guideline refine-
ment to improve the inter-annotator agreement, which is widely
adopted in the literature [5, 35]. Specifically, six annotators label the
same annotation units in each iteration. In each round, we polish
the guideline and update the labeling materials according to the
annotator feedback and automatic evaluation result. We end the
guideline refinement process when the inter-annotator agreement
level is Moderate. The annotation units used in the guideline refine-
ment process are discarded. Specifically, we discard 10 annotation
units in the guideline refinement process and have 40 annotation
units for full labeling.
Full Labeling Process Firstly we arrange meetings with the an-
notators to align the understanding of the guideline. We share the
labeling rules that are obtained while observing the guideline re-
finement process with annotators. In particular, annotators should
identify the usefulness of each sentence independently of its con-
text (e.g., surrounding sentences). Additionally, general comments
about the question itself or its solutions should be avoided (e.g., “I
hate Java!”), as they do not provide useful information to answer

the query. Finally, for incomplete sentences, annotators should not
assume the usefulness of its hidden part (e.g., “the content in ‘[code
snippet]’ place holder”).

After the labeling process is finished, one author deals with the
labeling results. In each annotation unit, all the sentences that three
annotators agree to be useful to that question, coupled with the
technical query, serve as the input to the second phase. Note that,
there are three annotation units whose inter-annotator agreement
is Slight (i.e., the Kappa value k is 0.00 ≤ k ≥ 0.20) in the full labeling
process. We consider a good agreement to be at least Moderate (i.e.,
the Kappa value k is 0.40 ≤ k ≥ 0.60). Therefore, we discard these
annotation units as the labels may not be of good quality. We have
37 sets of ⟨ question, useful answers ⟩ pairs in total.
Inter-Annotator Agreement of Phase 1 The average kappa
value of the useful sentence selection phase is 0.43, indicating the
annotators achieve Moderate agreement. Previous work shows that
the human agreements on sentence selection task for constructing
news-domain summarization benchmarks are usually lower than
0.3 [33]. Additionally, the kappa value of a recent opinion summa-
rization benchmark is 0.36 [1]. It indicates that the inter-annotators
agreement on sentence selection task in our TechSumBench is
comparable to those of common NLP community benchmarks.
2.2.2 Phase 2: Summary Generation. In the second phase,
given a set of useful sentences to answer the technical question, an-
notators are required to generate a final extractive summary under
a budget of five sentences by selecting sentences based on three key
factors, i.e.,clarity of each sentence, redundancy among sentences,
and the importance for each sentence to answer the question.

To let annotators equip a consensus of the goal, we arrange a
meeting with all the annotators for two things. First, we provide
an example (excluded from the data used from constructing the
benchmark) to demonstrate the materials and the brief overall
labeling process. Second, we let them align their understanding
based on the materials by discussing with each other.

After that, annotators select sentences by following the pro-
cess: first, all sentences are clustered into different RCs (Redundant
Cluster) in which each sentence is semantically similar; then the
annotator should select the most summative sentence with high
clarity from each RC into the candidate list; finally the annotators
are asked to delete sentences from the candidate list until only five
sentences are left, by taking into account how well each sentence
answers the question. Note that, for each group of sentences in
our benchmark, there are always more than five RCs clustered by
annotators. Finally, the top five sentences serve as the summary of
the answers to the technical question.

2.3 Benchmark Statistic
In TechSumBench, there are 37 technical questions, each of which
corresponds to three ground truth answer summaries that are in-
dependently labeled by three annotators. Each summary contains
five sentences extracted from corresponding relevant answers. In
total, we have 111 query-summary pairs. The average number of
words in ground-truth summaries is 106.45. The scale of Tech-
SumBench is comparable with two commonly used query-focused
multi-documentation summarization benchmarks in the NLP com-
munity [7, 12], i.e., DUC-2005 and DUC-2007, which consist of 50
and 45 annotation units, respectively.
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3 APPROACH
This section presents our proposed approach TechSumBot to tackle
the problem of answer summarization for technical queries.

3.1 Overview
As shown in Figure 2, TechSumBot takes a technical query and a
set of relevant answers as input and outputs an extractive answer
summary. The framework of TechSumBot contains three core mod-
ules: Usefulness Ranking, Centrality Estimation, and Redundancy
Removal. Correspondingly, they tackle the problem from three dif-
ferent perspectives, 1) the degree of usefulness carried by an answer
sentence to answer the query; 2) the centrality (importance) level
carried by a sentence among answer sentences; 3) the extent of
redundant information carried by two sentences, respectively.

TechSumBot firstly decomposes all the relevant answers into a
list of sentences in the pre-processing step. In the first Usefulness
Ranking module, we leverage a transfer learning-based approach to
capture the usefulness of each sentence to the given query. Useful-
ness Ranking module produces a ranked list of answer sentences or-
dered by the predicted usefulness. Next, the second module, named
Centrality Estimation, measures the centrality (i.e., the importance)
of a sentence among the set of useful sentences by TextRank [27],
a simple yet effective approach for the problem. Centrality Estima-
tion module outputs a rank list of sentences in terms of sentence
centrality. The third module Redundancy Removal aims to reduce
redundant sentences among candidates. To achieve the goal, we pro-
pose a greedy algorithm-based selection mechanism, in which we
integrate the state-of-the-art sentence representation model. The
Redundancy Removal module also outputs a rank list of sentences
without redundant sentences. In the end, the top-5 answer sen-
tences are used to form an answer summary to the target technical
query.

3.2 Module I: Usefulness Ranking
Measuring the usefulness of sentences with respect to a given
query is a common step for the technical query-focused answer
summarization. For example, AnswerBot [41] assesses the useful-
ness by using handcrafted features which carry certain limitations.
Taking one of the features named semantic patterns as an exam-
ple, it uses a static set with 12 manually summarized strings (e.g.,
“I’d recommend...”) as an indicator of usefulness. However, such
heuristic-based features require great human effort to maintain.

3.2.1 Transfer Learning-based Ranking Approach. Inspired
by a recent work [42], we leverage BERT, a transfer learning-
based model [15] that has achieved great success in many Stack
Overflow-based tasks [43, 45], to model the extent of the usefulness
of each answer sentence with respect to the query. Specifically, we
first train a BERT-based classifier that predicts the likelihood of
an answer sentence’s usefulness score with respect to the target
query. And then we rank the usefulness of each answer sentence
by extracting the intermediate score (i.e., the probability of pos-
itive class) predicted by the classifier. We leverage a large-scale
QA dataset named ASNQ [13] (short for Answer Sentence Nat-
ural Questions) from the general domain to fine-tune the BERT-
based classifier. ASNQ has around 19 million pairs of data, in which
each data is in the form of two sets of query-sentence pairs, i.e.,

D = {{⟨Qi → PSj ⟩}, {⟨Qi → NSk ⟩}}. Qi denotes each query
in ASNQ data, which is the real anonymized query issued to the
Google search engine. PSj and NSk denote corresponding useful
and useless Wikipedia sentence for answering the query. Garg et al.
[13] argued that the BERT model trained with ASQN dataset can
produce promising performance on NLP domain sentence useful-
ness classification tasks. By doing so, our model can benefit from
the existing large-scale dataset.

3.2.2 Model Training. Firstly we train a BERT model for the
sentence usefulness classification task by feeding the ASNQ dataset
[13]. For each of the pairs ⟨Q, S⟩ in the ASNQ dataset, we convert it
into a format acceptable by BERT, i.e., {[CLS],Q, [SEP], S, [SEP]}.
Both [CLS] and [SEP] are special tokens used to form the input of
BERT. [CLS] stands for classification and [SEP] stands for separator
used to separate the Q and S . We follow the standard padding (i.e.,
adding [PAD] token) to the sequence to fix the length of each input
instance to 512. Next, the [CLS] vectors extracted from encoder
output serves as input to the final classification layer (i.e., a single
neural network layer) and Sigmoid function to produce the likeli-
hood of the input instance to be predicted as positive or negative
class. By following the standard practice, we use cross entropy as
the loss function:

L = −

N∑
i=1

(y log(ppos ) + (1 − y) logpneд) (1)

where N denotes the number of training instances; ppos and pneд
denotes the probability of the positive and negative classes.

Once the BERT model is trained, for a given queryQ and a set of
relevant answer sentences S = {S1, S2, ..., Si }, we utilize the model
to predict the likelihood of each of the pairs ⟨Q, Si ⟩ as positive
class (i.e., P(class = use f ul |⟨Q, S⟩)) to the query and consider the
probability ppos as the usefulness score. At the end, the usefulness
score is used to rank all candidate sentences. We select top k answer
sentences with the highest usefulness scores as the input of the
next module.

3.3 Module II: Centrality Estimation
To select summative sentences, we consider the usefulness of each
sentence to the query and the centrality of each sentence among all
candidates. To estimate the central sentences from all candidates,
we apply a simple yet effective approach, TextRank [27], to extract
the representativeness score of each sentence. TextRank is a graph-
based sentence ranking approach that essentially aims to quantify
the representativeness of each sentence in the sentence-graph based
on global information recursively drawn from the entire graph.
More precisely, a sentence similar to other sentences recommends
others and thus represents the overall understanding of the com-
plete documentation. Meanwhile, a highly recommended sentence
by others is likely to be more summative and representative.

To perform TextRank algorithm, each candidate sentence is rep-
resented into a node in a sentence-graph with undirected edges.
The initial weights of each edge are based on the word overlap
between two nodes. Specifically, given two sentences Si and Sj ,
each sentence is in form of N word tokens t , Si = t i1, t

i
2, ..., t

i
N , the

initial edge weight is defined as:
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Figure 2: Overview of TechSumBot
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Then TextRank recursively calculates the representativeness score
R(si ) of each sentence Si as follow:

R(Si ) = 1 − ϕ + ϕ ∗
∑

j ∈In(Si )

1
Out(Si )

R(Sj ) (3)

where In(Si ) denotes the list of nodes that point to Si whileOut(Si )
denotes the list of nodes that Si points to. The ϕ ∈ (0, 1) serves as
the dumping factor; it refers to the probability of jumping from a
given node to another random node in the graph (i.e., simulate the
user behavior of web surfing in PageRank). We set the heuristic
value ϕ as 0.85 which is the same as the original paper [27]. We
randomly set the initial value of R(si ) as the final value is not
affected by the initial value R(si ). TextRank stops the iterations
when the convergence score C is below a given threshold. Given
the iteration k , the convergence score C is defined as follows:

C = Rk+1(si ) − Rk (si ) (4)

As Mihalcea and Tarau [27] suggested, we set the threshold of C
as 0.0001. Finally, we rank all input sentences si by taking the final
representativeness score R(si ) as the ranking score. We feed the
ranked sentence list into the final module.

3.4 Module III: Redundancy Removal
According to the survey conducted by Xu et al. [41], redundancy
is one of the key factors that developers face in identifying their
target information in software questions and answer sites. Thus,
redundancy removal should be performed as a part of the answer
summarization solution. To remove redundant sentences, an in-
domain sentence representation model is desired to measure the
similarity between two answer sentences. To achieve this, we create
a large-scale SE domain sentence relationship dataset for training
the sentence representation model. Each instance in this dataset
is automatically extracted from Stack Overflow data by consid-
ering the implied semantics in the duplicate question links. We
then use our collected dataset to train a contrastive learning-based
sentence representation model and transform each sentence into
the corresponding representation. Finally, we embed the learned
representation into a greedy search algorithm to select sentences
iteratively.

3.4.1 Dataset Construction for Contrastive Learning. To
capture the semantic similarity between answer sentences, we train
a Stack Overflow-specific sentence representation model based on
contrastive learning. The main goal of contrastive representation
learning is to learn such an embedding space in which similar sen-
tence pairs stay close to each other while dissimilar ones are far
apart [12]. Each input instance for training the approach is in the
form of a triplet, ⟨s, s+, s−⟩, while ⟨s, s+⟩ are considered as similar
pairs and ⟨s, s−⟩ are dissimilar ones.

Unfortunately, none of the existing datasets in SE domain di-
rectly serves the purpose. To tackle the problem, we first carefully
observe the characteristic of Stack Overflow data and find that
the duplicate question pairs (as described in Section 2.1.1) in Stack
Overflow naturally carry the semantic relatedness between ques-
tions (i.e., describe the same semantic information but in different
ways) by its definition.5 Duplicate questions could be a valuable
signal considered as similar sentence pairs to supervise sentence
representation, i.e., the representation of duplicate questions is
expected to be close in the vector space while the non-duplicate
pairs are far from each other. Thus, we propose to create positive
(i.e., similar) sentence pairs in the triplet by leveraging duplicate
question pairs in Stack Overflow. Specifically, we extract the titles
of a pair of duplicate questions as the pair of the original sentence
and its similar sentence, i.e., ⟨s, s+⟩. Besides, we also observe that
if two questions are labeled by users with totally different tags,
then they are most likely irrelevant. Based on the observation, we
randomly select pairs of questions that share no common tag and
use their title to form the negative (i.e., dissimilar) sentence pairs
(i.e., ⟨s, s−⟩). By following the TechSumBench setting, we focus on
Stack Overflow duplicate posts with ‘Java’ and ‘Python’ tags. As a
result, we built a dataset with 304,046 sentence triplets ⟨s, s+, s−⟩.

3.4.2 Contrastive Learning for Sentence Embedding. We ap-
ply SIMCSE [12], the state-of-the-art sentence embedding approach
based on contrastive learning structure. SIMCSE uses a pre-trained
model, RoBERTa [23], as its base model for generating embeddings
and add a multilayer perceptron (i.e., MLP) layer on the top of it.

In the training stage of SIMCSE, for each input instance in the
form of a triplet ⟨s, s+i , s

−
i ⟩ described in Section 3.4.1, the loss func-

tion is defined as:

L = −loд
esim(ri ,r+i )/τ∑N

j=1(e
sim(ri ,r+j )/τ + esim(ri ,r−j )/τ )

(5)

5https://stackoverflow.com/help/duplicates

https://stackoverflow.com/help/duplicates
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while ri denotes the representation of each input si , N as the num-
ber of sentences in a mini-batch, and τ is a temperature hyperpa-
rameter, sim(r1, r2) is the cosine similarity, respectively. Specifically,
all parameters in base model RoBERTa [23] are fine-tuned by miniz-
ing the loss function (i.e., Eq. 5). We train the model by leveraging
our in-domain dataset described in Section 3.4.1.

3.4.3 Greedy Algorithm for Redundancy Removal. The goal
of this step is to select a subset of answer sentences with the min-
imum redundancy. To achieve this, we apply a greedy algorithm
which is originally proposed in the prior extractive summarization
study R2N2 [4] for removing redundant sentences. Thus, it perfectly
matches our scenario.
Algorithm 1: Greedy Selection for Redundancy Removal
Input: R[]: Ranked sentence list
Result: summary_list: List of summary sentences

1 embedding_list = [] ; /* initialize empty embedding list */

2 for sent in R do
3 embed = generate_embedding(sent);
4 embedding_list.append(embed);
5 end
6 redundancy_removed = []; /* initialize empty summary list */

7 redundancy_removed.append(S[0])
8 for embed in embedding_list[1:] do
9 for ground_truth in redundancy_removed do
10 if is_redundant(embed, ground_truth) then
11 continue
12 else
13 redundancy_removed.append(embed)
14 end
15 end
16 end
17 summary_list = select_top_five(redundancy_removed)
18 return summary_list

In our case, we first transform all the input (i.e., answer sentences)
into sentence embedding by using the sentence embedding model
described in Section 3.4.2 (i.e., Lines 2 to 5). Then we pick each
sentence for the final summary one-by-one according to the ranking
given in the Centrality Estimation module in descending order (i.e.,
Line 8 to 16). For each selection, if the cosine similarity between the
current sentence and others that are already included in the final
summary is above a threshold T , the current sentence is regarded
as redundant with the final summary and we discard it (i.e., Line
10 to 14). In the end, we pick the top five sentences after greedy
selection to form the final summary (i.e., Line 17). If less than five
sentences are left after running the greedy selection algorithm, we
pick all the remaining sentences as the summary.

3.5 Implementation Details
3.5.1 Usefulness Ranking Module. We implement the BERT
model by using a popular Python deep learning library named
Hugging Face6. The model version we select is ‘bert-base-uncased’.
We tune the same key hyper-parameters (i.e., the learning rate,
batch size, and number of epochs) as mentioned in the original
6https://huggingface.com

BERT paper[15].We fine tune themodel on the training set of ASNQ
(around 19 million data instances) and tune the hyper-parameters
(i.e., learning rate, batch size, and number of epochs) through the
grid searching on the validation dataset of ASNQ.

3.5.2 Centrality Estimation Module. We implement the Tex-
tRank algorithm by adapting the python TextRank library.7. Unlike
the original output of TextRank, which is in the form of a docu-
mentation, we extract the intermediate result of TextRank (i.e., the
pairs of a sentence and its representativeness score) as the output.

3.5.3 Redundancy Removal Module. We split our in-domain
sentence relationship dataset (described in Section 3.4.1) into train-
ing and test data with the ratio 9:1. To train our in-domain sentence
embedding model, we implement the base model (RoBERTa [23])
by using the same python library Hugging Face as Module I. We
select the ‘roberta-base’ verison. We then reuse the RoBERTa model
checkpoint provided by SIMCSE8 that has been fine tuned with
general domain dataset and further fine tune it with our training
sub-dataset. Meanwhile, we follow the same tuning methodology
as tuning the BERT-based model for Usefulness Ranking Module
(Section 3.5.1). We found that the performance achieved by tuning
with different hyper-parameters does not differ much. Thus we set
the learning rate as 5e-5, batch size as 64, and the number of epochs
as 3, which are the same as the setting in SIMCSE [12]. We tune the
threshold T for redundancy removal by performing a duplicate SO
post classification task only using titles, i.e., predict whether a given
pair of Stack Overflow title sentences are duplicates or not. This is
inspired by prior work [14] that the title of the Stack Overflow posts
is the most informative component for expressing the semantics.
Specifically, we obtain the representations of both sentences by
using our trained sentence embedding model as described in Sec-
tion 3.4.2. If the cosine similarity of both representations is higher
than the threshold T , we consider them duplicates. We empirically
investigate the performance with different values of the threshold
and obtain the best performing value of 0.8.

4 EXPERIMENT SETTINGS
This section describes the implementation details of all the base-
lines and the metrics that we used for evaluating the techniques
automatically.

4.1 Baselines
By following AnswerBot [41], we position our task as an extrac-
tive query-focused multi-documentation summarization task. Thus
we compare TechSumBot against two groups of baselines: 1) the
state-of-the-art answer summarization approach in the SE domain,
AnswerBot [41]; and 2) the state-of-the-art extractive query-focused
and multi-doc summarization approaches in the NLP domain (i.e.,
LexRank [9], Biased-TextRank [17], and QuerySum [42]).
AnswerBot. AnswerBot is the state-of-the-art Stack Overflow an-
swer summarization approach. It retrieves relevant questions and
then selects useful answer paragraphs. Finally, AnswerBot gener-
ates summaries by leveraging MRR algorithm. In relevant question
retrieval process of AnswerBot [41], it requires a relevant score,

7https://github.com/summanlp/TextRank
8https://github.com/princeton-nlp/SimCSE

https://huggingface.com
https://github.com/summanlp/TextRank
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which represents the extent of the relevance of each answer for the
query. In our experiment, we set the relevant scores as 1 because
the input answers are selected from the duplicated question posts
of the query, which is voted as duplicated by Stack Overflow users
as described in Section 2.
LexRank. LexRank [9] is a widely used text summarization ap-
proach that is based on sentence-graph. It computes the importance
of sentences based on the cosine similarity in the sentence-graph.
We implement the LexRank by leveraging python lexrank library.9
Biased-TextRank. Biased-TextRank [17] achieves great perfor-
mance on a query-focused debates summarization dataset in the
NLP domain [17]. It works for the query-focused multi-doc summa-
rization task, which matches our task. Biased-TextRank is an unsu-
pervised summarization approach and based on the sentence graph.
It also considers the query bias into the sentence-graph and applies
an advanced sentence representation approach (i.e., Sentence-BERT
[34]) in its pipeline. To adopt Biased-TextRank on TechSumBench,
we perform the grid search for its hyperparameters (i.e., damp-
ing_factor and similarity_score). We set both damping_factor and
similarity_score to 0.7.
QuerySum. To the best of our knowledge, QuerySum [42] is the
state-of-the-art summarization approach on query-focused multi-
doc summarization task in the NLP domain. It follows coarse-to-
fine framework that progressively estimates whether the sentences
should be in the summary. Wemodified the QuerySum [42] pipeline
to enable the sentence-level budget of the final summary other than
the word number budget used in the original paper.

4.2 Automatic Evaluation Metrics
Following the existing summarization approaches [17, 42], we use
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [20],
a set of evaluation metrics used for evaluationg the automatic sum-
marization approaches, as our automatic evaluation metric. ROUGE
is a widely adopted evaluation metric for automatic evaluation for
summarization systems [10]. We report ROUGE-N and ROUGE-L.
ROUGE-N evaluates the extent of the n-gram overlapping between
a new summary and a set of ground-truth summaries [20]:

ROUGE-N =

∑
Si ∈S

∑
дramn ∈Si

Countmatch (дramn )∑
Si ∈S

∑
дramn ∈Si

Count(дramn )
(6)

where S denotes the set of ground-truth summaries, n denotes the
n-gram length of the summary, Countmatch (дramn ) and дramn
denote the maximum n-grams numbers of their coexistence in
the ground-truth summaries and a new summary. ROUGE-L mea-
sures the overlapping of LCS (i.e., longest common sub-sequence)
between the new summary and ground-truth summaries. By follow-
ing baseline [17], we report ROUGE-1, ROUGE-2, and ROUGE-L.
We implement ROUGE evaluation by using the pyrouge python
library.10

5 EXPERIMENT RESULTS
This section presents our experiment results with corresponding
analysis to answer the following three research questions:

9https://pypi.org/project/lexrank/
10https://github.com/bheinzerling/pyrouge

RQ1: How effective are the existing approaches in summarizing
answers for technical queries on our benchmark?
RQ2: Comparing with existing approaches, how effective is our
approach TechSumBot?
RQ3: How much does each module contribute to the performance
of TechSumBot?

5.1 RQ1: Effectiveness of Existing Approaches
Experimental setting. To answer this research question, we com-
pare the performance of four existing approaches from both NLP
and SE-domain as described in Section 4.1. In particular, to inves-
tigate the improvement space of each approach, we also calculate
the upper bound of the considered evaluation metrics by assuming
the human-annotated summaries (i.e., ground truth) as the output
of the ideal approach. For each query in our benchmark, we calcu-
late the ROUGE-N score (we set n = 1, 2) and ROUGE-L between
the output produced by an approach and each of the ground truth
summaries in our benchmark as described in Section 4.2. Then, we
compute the mean of the ROUGE scores.

Table 2: Overall Performance of Existing Approaches

Approach ROUGE-1 ROUGE-2 ROUGE-L
Upper Bound∗ 0.784 0.697 0.772

Software Engineering Domain
AnswerBot 0.490 0.276 0.456

NLP Domain
LexRank 0.501 0.289 0.448

Biased-TextRank 0.428 0.217 0.400
QuerySum 0.508 0.284 0.476

∗: Upper Bound: assuming the human-annotated summaries (i.e., ground
truth summary) as the output of the ideal approach.

Result & Analysis. As shown in the Table 2, we find that none
of the considered approaches consistently performs better than
the others. Specifically, QuerySum performs the best in terms of
ROUGE-1 and ROUGE-L while LexRank performs the best in terms
of ROUGE-2. More precisely, QuerySum and LexRank achieve com-
parable performance in terms of ROUGE-1 and ROUGE-2 but Query-
Sum outperforms LexRank on ROUGE-L by a large margin, i.e., 6%.
AnswerBot performs worse than QuerySum and LexRank on all
the evaluation metrics consistently but by a small margin. Biased-
TextRank performs the worst and its performance differs from the
others. Biased-TextRank and LexRank are unsupervised approaches
and they are similar as both of them use the PageRank algorithm.
There are two key differences between them, (1) whether query
information is considered, (2) integrated sentence representation
techniques. For the former difference, Biased-TextRank leverages
query information (while LexRank does not) which has been demon-
strated it is helpful in multiple related tasks, i.e., query-focus sum-
marization. It indicates that the integrated sentence embedding
technique (i.e., Sentence-BERT) in Biased-TextRank could be its
main bottleneck. Overall, the performance ranking is QuerySum >
LexRank > AnswerBot > Biased-TextRank.

In particular, comparing the best performing approach from
general domain (i.e., QuerySum) with SE domain approach (i.e.,
AnswerBot), we find that QuerySum outperforms AnswerBot on all
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the evaluation metrics but only by a small margin, i.e., 3.6%, 2.8%,
4.3%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

Comparing the existing approaches with the upper bound per-
formance, we find that there is a big room for improvement. The
ROUGE-1, ROUGE-2, and ROUGE-L scores of best performing ap-
proach QuerySum is 25.29%, 48.36%, 28.21% lower than the upper
bound performance, respectively. Particularly, we observe that im-
provement space in terms of ROUGE-2 is much bigger than that
of ROUGE-1 (1.9 times) and ROUGE-L (1.7 times). Considering
ROUGE-2 refers to the bi-gram overlapping between generated
summary and ground truth summary, it indicates that the existing
approaches are unable to capture the information of domain-specific
bi-gram terms well enough.
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i.e., 3.6%, 2.8%, 4.3%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L,
respectively.

Comparing the existing approaches with the upper bound per-
formance, we find that there is a big room for improvement. The
ROUGE-1, ROUGE-2, and ROUGE-L scores of best performing ap-
proach QuerySum is 25.29%, 48.36%, 28.21% lower than the upper
bound performance, respectively. Particularly, we observe that im-
provement space in terms of ROUGE-2 is much bigger than that
of ROUGE-1 (1.9 times) and ROUGE-L (1.7 times). Considering
ROUGE-2 refers to the bi-gram overlapping between generated
summary and ground truth summary, it indicates that the existing
approaches are unable to capture the information of domain-specific
bi-gram terms well enough.

Overall, QuerySum performs the best on our benchmark
and Bias-TextRank performs the worst. Besides, we also
find that there is still a big improvement space for the task.

5.2 RQ2: Effectiveness of TechSumBot

Experimental setting. To answer this research question, we firstly
follow the same methodology of RQ1 and collect the performance
(i.e., in terms of ROUGE-1, ROUGE-2, and ROUGE-L) of our ap-
proach on our benchmark. In such a way, we can compare our pro-
posed approach with the best performing baseline approaches from
both software engineering (i.e., AnswerBot) and natural language
processing (i.e., QuerySum) domains identified in RQ1. Moreover,
we conduct a user study on the three approaches to comprehen-
sively understand their effectiveness.

The user study involves five participants, four of them are PhD
students and the other one is a postdoctoral fellow. Note that none
of participants are involved in the benchmark construction. Consid-
ering the expensive human resources, we randomly sample a subset
of our TechSumBenchwith ten technical queries as the experimen-
tal data. Half of the queries are Python-related and the other half
are Java-related. All the participants have at least three years of
development experience in Java or Python. For each question, we
collect three answer summaries generated by QuerySum, Answer-
Bot, and our approach, respectively. By following AnswerBot [41],
we then ask all the participants to provide 5-point likert scores to
all the summaries separately in terms of usefulness and diversity
with respect to the technical query. In other words, participants are
required to label each summary from “extremely useless” (denote
as 1) to “extremely useful” (denote as 5) and from “extremely re-
dundant” (denote as 1) to “extremely diverse” (denote as 5). For all
the approaches, we report the average score labeled by participants
across all the 10 queries as their final score. For each of the queries,
we anonymize the corresponding approaches of all the summaries
and randomly sort them to avoid bias.
Result & Analysis.We report the automatic evaluation result in
Table 3. The result shows that TechSumBot consistently outper-
forms best performing baseline approaches from both SE and NLP
domains in terms of all evaluation metrics. Comparing with the
Software Engineering domain state-of-the-art (SOTA) baseline, i.e.,
AnswerBot, TechSumBot achieves better performance in terms of
ROUGE-1, ROUGE-2, and ROUGE-L by 14.90%, 36.59%, and 17.54%,

Table 3: Performance Comparison Between TechSumBot
and Selected Approaches

System ROUGE-1 (%) ROUGE-2 (%) ROUGE-L (%)
Software Engineering Domain

AnswerBot 0.490 (14.90) 0.276 (36.59) 0.456 (17.54)
NLP Domain

QuerySum 0.508 (10.83) 0.284 (32.75) 0.476 (12.61)
Our Approach

TechSumBot 0.563 0.377 0.536
%: relative improvement of TechSumBot, i.e., (TechSumBot-

baseline)/baseline.
respectively. Comparing with QuerySum, the SOTA approach in
NLP community, TechSumBot outperforms it by 10.83%, 32.75%,
and 12.61%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L, re-
spectively. In summary, TechSumBot outperforms the existing
approaches by a large margin.

Table 4: User Study Result

System Usefulness Diversity
AnswerBot 3.68 3.62
QuerySum 3.80 3.64

TechSumBot 4.02 4.26

The result of the user study is shown in Table 4. We report the
mean of usefulness and diversity score of our approach and the two
baselines. We observe that our approach also achieves the best per-
formance consistently and the improvement is significant (p<0.05)
in terms of both usefulness and diversity. For the usefulness score,
the average score of our approach is 4.02, i.e., between “useful”
and “extremely useful”, while AnswerBot and QuerySum are 3.68
and 3.80, i.e., between “natural” and “useful”. In other words, our
approach outperforms AnswerBot and QuerySum by 9.23% and
5.79% in terms of average usefulness score. For diversity score, the
average score of our approach is 4.26, i.e., “diverse”, while Answer-
Bot and QuerySum are 3.62 and 3.64, i.e., between “neutral” and
“diverse”. Our approach outperforms AnswerBot and QuerySum by
17.68% and 17.03% in terms of average diversity score. Overall, both
automatic evaluation and user study demonstrate that our approach
outperforms the existing approaches. Meanwhile, we observe that
Answerbot’s diversity and usefulness scores in our user study are
very close to those in the user study of Answerbot [41]. We also
find that the result derived from automatic evaluation based on
our benchmark and human evaluation are consistent. Both of them
indicate that our approach produces the most promising answer
summaries.

The results of automatic evaluation show that TechSum-
Bot outperforms the state-of-the-art summarization base-
lines by 10.83%–14.90%, 32.75%–36.59%, and 12.61%–17.54%
in terms of ROUGE-1, ROUGE-2, and ROUGE-L respec-
tively. The results of user study also show our approach
outperforms the state-of-the-art summarization baselines
by 5.79%–9.23%, 17.03%–17.68% in terms of average useful-
ness and diversity score.

5.2 RQ2: Effectiveness of TechSumBot

Experimental setting.To answer this research question, we firstly
follow the same methodology of RQ1 and collect the performance
(i.e., in terms of ROUGE-1, ROUGE-2, and ROUGE-L) of our ap-
proach on our benchmark. In such a way, we can compare our pro-
posed approach with the best performing baseline approaches from
both software engineering (i.e., AnswerBot) and natural language
processing (i.e., QuerySum) domains identified in RQ1. Moreover,
we conduct a user study on the three approaches to comprehen-
sively understand their effectiveness.

The user study involves five participants, four of them are PhD
students and the other one is a postdoctoral fellow. Note that none
of participants are involved in the benchmark construction. Consid-
ering the expensive human resources, we randomly sample a subset
of our TechSumBenchwith ten technical queries as the experimen-
tal data. Half of the queries are Python-related and the other half
are Java-related. All the participants have at least three years of
development experience in Java or Python. For each question, we
collect three answer summaries generated by QuerySum, Answer-
Bot, and our approach, respectively. By following AnswerBot [41],
we then ask all the participants to provide 5-point likert scores to
all the summaries separately in terms of usefulness and diversity
with respect to the technical query. In other words, participants are
required to label each summary from “extremely useless” (denote
as 1) to “extremely useful” (denote as 5) and from “extremely re-
dundant” (denote as 1) to “extremely diverse” (denote as 5). For all
the approaches, we report the average score labeled by participants
across all the 10 queries as their final score. For each of the queries,
we anonymize the corresponding approaches of all the summaries
and randomly sort them to avoid bias.
Result & Analysis.We report the automatic evaluation result in
Table 3. The result shows that TechSumBot consistently outper-
forms best performing baseline approaches from both SE and NLP
domains in terms of all evaluation metrics. Comparing with the
Software Engineering domain state-of-the-art (SOTA) baseline, i.e.,
AnswerBot, TechSumBot achieves better performance in terms of

Table 3: Performance Comparison Between TechSumBot
and Selected Approaches

System ROUGE-1 (%) ROUGE-2 (%) ROUGE-L (%)
Software Engineering Domain

AnswerBot 0.490 (14.90) 0.276 (36.59) 0.456 (17.54)
NLP Domain

QuerySum 0.508 (10.83) 0.284 (32.75) 0.476 (12.61)
Our Approach

TechSumBot 0.563 0.377 0.536
%: relative improvement of TechSumBot, i.e., (TechSumBot-

baseline)/baseline.

ROUGE-1, ROUGE-2, and ROUGE-L by 14.90%, 36.59%, and 17.54%,
respectively. Comparing with QuerySum, the SOTA approach in
NLP community, TechSumBot outperforms it by 10.83%, 32.75%,
and 12.61%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L, re-
spectively. In summary, TechSumBot outperforms the existing
approaches by a large margin.

Table 4: User Study Result

System Usefulness Diversity
AnswerBot 3.68 3.62
QuerySum 3.80 3.64

TechSumBot 4.02 4.26

The result of the user study is shown in Table 4. We report the
mean of usefulness and diversity score of our approach and the
two baselines. We observe that our approach achieves the best per-
formance consistently and the improvement is significant (p<0.05)
in terms of usefulness and diversity. For the usefulness score, the
average score of our approach is 4.02, i.e., between “useful” and
“extremely useful”, while AnswerBot and QuerySum are 3.68 and
3.80, i.e., between “natural” and “useful”. In other words, our ap-
proach outperforms AnswerBot and QuerySum by 9.23% and 5.79%
in terms of average usefulness score. The average diversity score of
our approach is 4.26, i.e., “diverse”, while AnswerBot and QuerySum
are 3.62 and 3.64, i.e., between “neutral” and “diverse”. Our approach
outperforms AnswerBot and QuerySum by 17.68% and 17.03% in
terms of average diversity score. Overall, both automatic evalua-
tion and user study demonstrate that our approach outperforms
the existing approaches. Meanwhile, we observe that Answerbot’s
diversity and usefulness scores in our user study are very close to
those in the user study of Answerbot [41]. We also find that the
result derived from automatic evaluation based on our benchmark
and human evaluation are consistent. Both of them indicate that
our approach produces the most promising answer summaries.
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i.e., 3.6%, 2.8%, 4.3%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L,
respectively.

Comparing the existing approaches with the upper bound per-
formance, we find that there is a big room for improvement. The
ROUGE-1, ROUGE-2, and ROUGE-L scores of best performing ap-
proach QuerySum is 25.29%, 48.36%, 28.21% lower than the upper
bound performance, respectively. Particularly, we observe that im-
provement space in terms of ROUGE-2 is much bigger than that
of ROUGE-1 (1.9 times) and ROUGE-L (1.7 times). Considering
ROUGE-2 refers to the bi-gram overlapping between generated
summary and ground truth summary, it indicates that the existing
approaches are unable to capture the information of domain-specific
bi-gram terms well enough.

Overall, QuerySum performs the best on our benchmark
and Bias-TextRank performs the worst. Besides, we also
find that there is still a big improvement space for the task.

5.2 RQ2: Effectiveness of TechSumBot

Experimental setting. To answer this research question, we firstly
follow the same methodology of RQ1 and collect the performance
(i.e., in terms of ROUGE-1, ROUGE-2, and ROUGE-L) of our ap-
proach on our benchmark. In such a way, we can compare our pro-
posed approach with the best performing baseline approaches from
both software engineering (i.e., AnswerBot) and natural language
processing (i.e., QuerySum) domains identified in RQ1. Moreover,
we conduct a user study on the three approaches to comprehen-
sively understand their effectiveness.

The user study involves five participants, four of them are PhD
students and the other one is a postdoctoral fellow. Note that none
of participants are involved in the benchmark construction. Consid-
ering the expensive human resources, we randomly sample a subset
of our TechSumBenchwith ten technical queries as the experimen-
tal data. Half of the queries are Python-related and the other half
are Java-related. All the participants have at least three years of
development experience in Java or Python. For each question, we
collect three answer summaries generated by QuerySum, Answer-
Bot, and our approach, respectively. By following AnswerBot [41],
we then ask all the participants to provide 5-point likert scores to
all the summaries separately in terms of usefulness and diversity
with respect to the technical query. In other words, participants are
required to label each summary from “extremely useless” (denote
as 1) to “extremely useful” (denote as 5) and from “extremely re-
dundant” (denote as 1) to “extremely diverse” (denote as 5). For all
the approaches, we report the average score labeled by participants
across all the 10 queries as their final score. For each of the queries,
we anonymize the corresponding approaches of all the summaries
and randomly sort them to avoid bias.
Result & Analysis.We report the automatic evaluation result in
Table 3. The result shows that TechSumBot consistently outper-
forms best performing baseline approaches from both SE and NLP
domains in terms of all evaluation metrics. Comparing with the
Software Engineering domain state-of-the-art (SOTA) baseline, i.e.,
AnswerBot, TechSumBot achieves better performance in terms of
ROUGE-1, ROUGE-2, and ROUGE-L by 14.90%, 36.59%, and 17.54%,

Table 3: Performance Comparison Between TechSumBot
and Selected Approaches

System ROUGE-1 (%) ROUGE-2 (%) ROUGE-L (%)
Software Engineering Domain

AnswerBot 0.490 (14.90) 0.276 (36.59) 0.456 (17.54)
NLP Domain

QuerySum 0.508 (10.83) 0.284 (32.75) 0.476 (12.61)
Our Approach

TechSumBot 0.563 0.377 0.536
%: relative improvement of TechSumBot, i.e., (TechSumBot-

baseline)/baseline.
respectively. Comparing with QuerySum, the SOTA approach in
NLP community, TechSumBot outperforms it by 10.83%, 32.75%,
and 12.61%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L, re-
spectively. In summary, TechSumBot outperforms the existing
approaches by a large margin.

Table 4: User Study Result

System Usefulness Diversity
AnswerBot 3.68 3.62
QuerySum 3.80 3.64

TechSumBot 4.02 4.26

The result of the user study is shown in Table 4. We report the
mean of usefulness and diversity score of our approach and the two
baselines. We observe that our approach also achieves the best per-
formance consistently and the improvement is significant (p<0.05)
in terms of both usefulness and diversity. For the usefulness score,
the average score of our approach is 4.02, i.e., between “useful”
and “extremely useful”, while AnswerBot and QuerySum are 3.68
and 3.80, i.e., between “natural” and “useful”. In other words, our
approach outperforms AnswerBot and QuerySum by 9.23% and
5.79% in terms of average usefulness score. For diversity score, the
average score of our approach is 4.26, i.e., “diverse”, while Answer-
Bot and QuerySum are 3.62 and 3.64, i.e., between “neutral” and
“diverse”. Our approach outperforms AnswerBot and QuerySum by
17.68% and 17.03% in terms of average diversity score. Overall, both
automatic evaluation and user study demonstrate that our approach
outperforms the existing approaches. Meanwhile, we observe that
Answerbot’s diversity and usefulness scores in our user study are
very close to those in the user study of Answerbot [41]. We also
find that the result derived from automatic evaluation based on
our benchmark and human evaluation are consistent. Both of them
indicate that our approach produces the most promising answer
summaries.

The results of automatic evaluation show that TechSum-
Bot outperforms the state-of-the-art summarization base-
lines by 10.83%–14.90%, 32.75%–36.59%, and 12.61%–17.54%
in terms of ROUGE-1, ROUGE-2, and ROUGE-L respec-
tively. The results of user study also show our approach
outperforms the state-of-the-art summarization baselines
by 5.79%–9.23%, 17.03%–17.68% in terms of average useful-
ness and diversity score.
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Table 5: Ablation Study of Each Module

System ROUGE-1 ROUGE-2 ROUGE-L
TechSumBot

Module I 0.507 0.298 0.478
Module I & II 0.543 0.340 0.512

Module I & II & III 0.563 0.377 0.536

5.3 RQ3: Ablation Study
Experimental setting. We conduct an ablation study on the per-
formance of each module following the same setting for evaluating
QuerySum in [42]. Since each module outputs a rank list of answer
sentences, we iteratively integrate them one by one and collect the
top-5 ranked sentences as the final summary. Then we follow the
same setting of evaluating the end-to-end approach and calculate
the evaluation metrics, i.e., ROUGE-1, ROUGE-2, and ROUGE-L.

Result & Analysis. We report the result in Table 5. We observe
that each module contributes its own part to the system perfor-
mance. By only applying Module I, we observe that it can already
consistently outperforms AnswerBot in terms of all evaluation met-
rics by a small margin. Besides, Module I can achieve comparable
result with QuerySum. The result provides another evidence on
the effectiveness of pre-trained model. Comparing with Module I,
integrating Module II on the top of Module I can further boost the
performance by 7.10%, 17.11%, and 7.11% in terms of ROUGE-1,
ROUGE-2, and ROUGE-L, respectively. Besides, we find that it can
already achieve better performance than all the existing approaches
in terms of all the evaluation metrics consistently. By combining all
the modules, i.e., the complete version of our approach, it produces
the best performance. Specifically, it improves the performance
over applying the first two modules by 3.68%, 8.02%, and 4.69% in
terms of ROUGE-1, ROUGE-2, and ROUGE-L respectively.
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formance of each module following the same setting for evaluating
QuerySum in [42]. Since each module outputs a rank list of answer
sentences, we iteratively integrate them one by one and collect the
top-5 ranked sentences as the final summary. Then we follow the
same setting of evaluating the end-to-end approach and calculate
the evaluation metrics, i.e., ROUGE-1, ROUGE-2, and ROUGE-L.

Table 5: Ablation Study of Each Module

System ROUGE-1 ROUGE-2 ROUGE-L
TechSumBot

Module I 0.507 0.298 0.478
Module I & II 0.543 0.340 0.512

Module I & II & III 0.563 0.377 0.536
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Result & Analysis. We report the result in Table 5. We observe
that each module contributes its own part to the system perfor-
mance. By only applying Module I, we observe that it can already
consistently outperforms AnswerBot in terms of all evaluation met-
rics by a small margin. Besides, Module I can achieve comparable
result with QuerySum. The result provides another evidence on
the effectiveness of pre-trained model. Comparing with Module I,
integrating Module II on the top of Module I can further boost the
performance by 7.10%, 17.11%, and 7.11% in terms of ROUGE-1,
ROUGE-2, and ROUGE-L, respectively. Besides, we find that it can
already achieve better performance than all the existing approaches
in terms of all the evaluation metrics consistently. By combining all
the modules, i.e., the complete version of our approach, it produces
the best performance. Specifically, it improves the performance
over applying the first two modules by 3.68%, 8.02%, and 4.69% in
terms of ROUGE-1, ROUGE-2, and ROUGE-L respectively.

Every module of TechSumBot contributes its own part to
the effectiveness of the whole solution. Combining the first
two modules can already produce a better performance
than the existing approaches.

6 DISCUSSION
6.1 Qualitative Analysis
We conduct a qualitative analysis by comparing the summaries gen-
erated by each baseline with the ground-truth summaries in Tech-
SumBench. More precisely, we analyze the sentences in ground-
truth summaries that are incorrectly discarded by baseline ap-
proaches and sentences that appear in the summaries generated by
baselines but excluded in the ground-truth summaries. We identi-
fied multiple weaknesses of existing approaches.

First, we observe that the semantic patterns used in AnswerBot
sometimes lead to incorrect results. For example, given a query in
TechSumBench: “What is the difference between a primary key and
a unique constraint”, there is one relevant answer sentence11 that
annotators do not consider useful: “I suggest that if you are the kind
11https://stackoverflow.com/a/9391610

of coder, ..., then PRIMARY KEY is just the thing for you”. TechSum-
Bot successfully determines that this sentence is not useful to the
query. However, a heuristic semantic pattern in AnswerBot regards
sentences that start with “I suggest that ...” as useful, which leads
AnswerBot to incorrectly identify the sentence to be useful. As
curating high-quality patterns for extractive summarization task
relies on the deep understanding of the dataset characteristics [48],
pattern-based summarization approaches on Stack Overflow may
requires in-depth exploration of Stack Overflow data.

Second, we observe that existing approaches are weak at distin-
guishing the redundant sentences between answer sentences. For
example, annotators consider both sentences “2**2 = 2 power-of
2.” and “The ** operator in Python is really "power;" that is, 2**3
= 8.” useful to the query, but redundant to each other since both
sentences explain ‘**’ operator in Python. To avoid the redundancy
in the summary, only one of the two sentences should be retained
in the final summary. However, QuerySum and AnswerBot put
both sentences into their final summaries. The root cause of such a
failure is that the two queries are semantically close but lexically
different. When removing redundant sentences, both QuerySum
and AnswerBot represent sentences by bag-of-words model and
word embedding, which cannot capture the semantic information.

6.2 How Automatic Evaluation Complements
User Evaluation

Though user evaluation has advantages [3], researchers have per-
ceived some barriers when performing user evaluations [3, 10, 18].
Especially, recruiting issues and time commitment are the two
most common barriers[3]. Fabbri et al. [10] also report that existing
summarization approaches apply user evaluations that are largely
inconsistent with previous works. Furthermore, they observe that
the annotation judges of evaluating summarization approaches are
different among annotators with dissimilar knowledge backgrounds
(e.g., experts and crowd-sourced workers) [10].

In our case, for query-focused Stack Overflow answer summa-
rization, an automatic evaluation approach by using our benchmark
TechSumBench can mitigate the aforementioned barriers. By of-
fering a ground-truth summarization benchmark, automatically
evaluating a summarization approach no longer requires recruiting
annotators and long waiting periods. Besides, the automatic evalu-
ation result is reusable for the subsequent works by applying the
same evaluation metric, e.g., ROUGE [20] on the same benchmark.

We acknowledge that the current version of our benchmark may
still contain subjective bias due to the limited size of our benchmark
and the annotators’ background and judgment preferences, which
are also the biases that exist when conducting a user study. We
mitigate such a bias by offering multiple ground-truth summaries
that are produced by different annotators independently for the
same query. The automatic evaluation’s result is calculated by us-
ing the averaged values of the considered evaluation metrics. The
biggest advantage of our benchmark is that it’s highly extendable
as compared with human evaluation. We provide the replication
package as well as the guideline so that the benchmark can be
further expanded by community effort. For example, researchers
can independently provide more summaries for each query or ex-
pand the pool of the queries. With such contributions from the
community, the subjective bias can be continuously mitigated.
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and the annotators’ background and judgment preferences, which
are also the biases that exist when conducting a user study. We
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6.3 Threats to Validity
Threats to internal validity are related to the implementation er-
rors of TechSumBot and baselines. To mitigate the first threat, we
have double checked our code. For the implementation of baseline
approaches, the threat is limited as we reuse their published repli-
cation packages. The experiment bias of the annotators may also
affect the internal validity. To minimize the threat, we conduct an it-
erative guideline refinement process. In addition, all the annotators
have Java or Python development experience for at least three years.
Threats to external validity are related to the generalizability of our
benchmark and experiment results. To ensure the quality of the
benchmark, we follow the standard process to produce summaries
and updated the guidelines iteratively. The programming language
considered in our experiments is also a threat to external validity.
Different from prior work [41] that only considers Stack Overflow
posts tagged as Java, our work mitigates this threat by considering
two popular programming languages, i.e., Java and Python.
Threats to construct validity are related to the used evaluation
metrics. ROUGE is widely used as an automatic evaluation metric
for summarization approaches in both NLP and SE domains [17,
42, 44]. We use usefulness and diversity in our human evaluation,
which are widely used to evaluate the SE domain summarization
tasks [8, 25, 41]. Thus, we believe the threat is minimal.

7 RELATEDWORK
Summarization of software artifacts has gained much research in-
terest. There are multiple previous works on summarizing different
contents in Stack Overflow. Xu et al. [41] proposed AnswerBot
which is a Stack Overflow answer summary generator with respect
to a specific query. Besides, Opiner [38] aims to help developers effi-
ciently understand API by summarizing API reviews. Opiner adopts
available summarization algorithms, such as Textrank [27] (extrac-
tive) and Opinosis [11] (abstractive), to produce API reviews from
Stack Overflow posts. Furthermore, Nadi and Treude [28] extracted
the essential sentences from Stack Overflow to navigate the devel-
opers reading answers. Naghshzan et al. [29] proposed an approach
based on TextRank algorithm to summarize Android API methods
discussed in Stack Overflow. Their approach is based on extractive
summarization that extracts the most important sentences from
the Stack Overflow posts. The differences between prior works and
ours are three-fold. First, different from the aforementioned works
that extract useful Stack Overflow sentences by using handcrafted
features, we achieve the goal by proposing a transfer learning-based
approach. We train the pre-trained models to learn pre-knowledge
from a large-scale QA dataset. Second, previous approaches remove
redundant sentences in a simple way which carries certain limi-
tations. For example, to calculate sentence similarity, AnswerBot
represents sentences into vectors through word embedding and
word IDF metrics, which cannot capture the semantic-related se-
quential information and is poor at distinguishing sentences that
are semantically different but lexically similar [40]. Differently,
TechSumBot combines both transformer-based sentence represen-
tation model and contrastive learning training approach to address
the limitations. Third, unlike aforementioned works that perform
manual evaluation like user studies, we construct the first bench-
mark for SO query-focused multi-answer summarization task and

enable automatic evaluation, which carries unique advantages as
compared with human evaluation.

Apart from automatic summarization for Stack Overflow, NLP
community researchers also work on summarization tasks, e.g.,
query-focused summarization and multi-documentation summa-
rization. Xu et al. [42] presents that the obstacles to multi-doc sum-
marization over the setting of single-doc are (1) difficulty in obtain-
ing training data, (2) large size and number of input resources, and
(3) redundancy among input resources. Traditional summarization
approaches (e.g., LexRank [9]) rely on the sentence graph and apply
PageRank algorithm to rank the sentences. Biased-TextRank [17]
is query-focused. It considers embedding the query bias into the
graph and leveraging Sentence-BERT [46] to represent the sen-
tences. QuerySum, to our best knowledge, is the state-of-the-art
query-focused and multi-doc summarization approach in NLP field.
It follows the ‘coarse-to-fine’ principle to select and filter sentences.
QuerySum also considers the relationship between queries and
sentences as a useful sentence selection task. Different from the
above mentioned works, our approach’s framework is specifically
designed for Stack Overflow answer summarization. It takes into
account the question-answer data structure as well as the wide-
spread content redundancy in software Q&A sites [41]. Besides,
our approach leverages the characteristic of Stack Overflow data.
For instance, we observed that Stack Overflow users actively label
the duplication relationship between posts. Hence, we leverage the
information to train the in-domain sentence representation model.

8 CONCLUSION AND FUTUREWORK
In this paper, we focus on the problem of Stack Overflow answer
summarization for technical queries. Considering the limitations of
only conducting human evaluation without automatic evaluation in
the past studies, we find that there is a need of a benchmark to en-
able automatic evaluation as a complementary evaluation method.
Thus, we manually construct the first Stack Overflow multi-answer
summarization benchmark TechSumBench, which consists of 111
query-answer summary pairs from 382 Stack Overflow answers
with 2,014 sentence candidates. Based on TechSumBench, we evalu-
ate the performance of existing and potential applicable approaches
from both SE and NLP fields. The results indicate the approach
from the NLP field (i.e., QuerySum [42]) achieves the best perfor-
mance and there is still a big room for improvement. Motivated by
this, we further propose a new approach TechSumBot to tackle
the problem. We perform both automatic and human evaluations
to evaluate TechSumBot and the results show that TechSumBot
outperforms all SOTA baselines from both SE and NLP fields by
a large margin. In the future, we plan to integrate our approach
TechSumBot into an IDE to help developers in searching their
needed information from SQA sites more efficiently and accurately.
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