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ABSTRACT OF THE DISSERTATION
SUPPORTING SOFTWARE ENGINEERS WITH

LARGE LANGUAGE MODEL-BASED AUTOMATION

By

ZHANG, TING

In recent years, software engineering (SE) has witnessed significant growth, leading to

the creation and sharing of an abundance of software artifacts such as source code, bug

reports, and pull requests. Analyzing these artifacts is crucial for comprehending the

sentiments of software developers and automating various SE tasks, ultimately leading

to more human-centered automated SE and enhancing software development efficiency.

However, the diverse and unstructured nature of software text poses a significant chal-

lenge to this analysis. In response, researchers have investigated a variety of approaches,

including the utilization of natural language processing techniques. The advent of large

language models (LLMs), ranging from smaller-size LLMs (sLLMs) like BERT to big-

ger ones (bLLMs) such as LLaMA, has ignited a growing interest in their potential for

analyzing software-related text.

This dissertation explores how LLMs can automate different SE tasks involving classi-

fication, ranking, and generation tasks. In the first study, we assess the efficacy of sLLMs,

such as BERT, in SE sentiment analysis, comparing them to existing SE-specific tools.

Furthermore, we compare the performance of bLLMs with sLLMs in this context. In the

second study, we address the issue of retrieving duplicate bug reports. First, we create a

benchmark and then use bLLMs to enhance the accuracy of this process, with a specific

focus on employing GPT-3.5 for suggesting duplicate bug reports. In the third study, we

propose to leverage sLLMs to create precise and concise pull request titles.

In conclusion, this dissertation contributes to the SE field by exploring the potential

of LLMs to support software developers in understanding sentiments and improving the

efficiency of software development.
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Chapter 1

Introduction

In recent years, software engineering (SE) has seen significant growth and innovation due

to the increasing use of software in nearly every aspect of modern life. This has put SE at

the forefront of technological progress.

Despite advancements, software development remains a labor-intensive task that relies

heavily on human input. This has created a need for automated solutions to reduce

software development and maintenance workload.

To address these issues, this dissertation focuses on using Large Language Models (LLMs)

to improve automated SE. Automated SE aims to make the software development process

more efficient and produce higher-quality software.

This dissertation encompasses three studies, each dedicated to classification, ranking, and

text generation tasks respectively:

1. Sentiment Analysis for Software Engineering (SA4SE): This study seeks to discern

sentiment in software-related textual data, ranging from APP reviews on Google

Play to pull request feedback on GitHub and comments on Stack Overflow. The

1



CHAPTER 1. INTRODUCTION 2

end goal is to classify these text units into negative, positive, or neutral sentiment

categories.

2. Duplicate Bug Report Detection (DBRD): In this study, we tackle a ranking task.

Given a newly submitted bug report (BR), we aim to recommend a list of existing

BRs that the submitted report might be duplicating.

3. Automatic Pull Request (PR) Title Generation: Falling under text generation, this

segment focuses on crafting PR titles. The generation process leverages the PR

description, associated commit messages, and linked issue titles to ensure relevancy

and coherence.

Throughout these three studies, we leverage the capabilities of LLMs to expedite and

optimize the entire process. LLMs refer to Transformer models that are pre-trained on

massive text data. In recent years, LLMs have emerged as game-changing methods in arti-

ficial intelligence and natural language processing [189, 36, 190]. These LLMs come in two

flavors - smaller large language models (sLLMs) containing fewer than 10 billion param-

eters, which can be easily fine-tuned locally, and bigger large language models (bLLMs)

with over 10 billion parameters, which we adopt in-context learning. sLLMs are usually

pre-trained to learn context-aware word representations. These representations are very

effective when used as general-purpose semantic features. sLLMs have largely raised

the performance bar of many natural language processing (NLP) tasks, e.g., SA [188],

machine translation. They follow the “pre-training and fine-tuning” learning paradigm.

To work on downstream tasks, they require fine-tuning on domain-specific data. bLLMs

usually contain billions of parameters and exhibit strong capacities to understand natural

language and solve complex tasks by text generation. bLLMs adopts “in-context learning”

paradigm: they can be adapted to a downstream task simply by providing a prompt (a

natural language description of the task) [36].
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In summary, this dissertation demonstrates how LLMs can automate different SE tasks

involving classification, ranking, and generation tasks. This research aims to improve the

accuracy and efficiency of software text analysis, ultimately benefiting the SE community.

1.1 Thesis Statement

The thesis statement of this dissertation is as follows:

We can leverage large language models to support software developers in au-

tomating key tasks such as (1) detecting sentiment polarities, (2) identifying

potential duplicate BRs, and (3) crafting pull request titles.

Specifically, one publication aims to identify the sentiments expressed in software-related

texts [187]. Similarly, one publication works on detecting duplicate BRs [183], and another

focuses on automating pull request title generation [184] to improve software development

efficiency. Furthermore, two submissions are currently under review: one revisits the SA

task in SE with the recently proposed bLLMs [186], and the other combines the bLLMs

with a traditional information-retrieval tool for duplicate BR detection [185].

This dissertation makes the following contribution:

• We leverage various LLMs for the SA4SE task. First, we provide a large-scale compar-

ative analysis between five existing SA4SE tools and four sLLMs on six SE datasets

and demonstrate that sLLMs perform better than prior specialized SA4SE tools. Fur-

thermore, we examine the effectiveness of open-source bLLMs on the SA4SE task.

We evaluate three open-source bLLMs under zero and few-shot settings. We com-

pare fine-tuned sLLMs with bLLMs on five SE datasets collected from five distinct

platforms.
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• We conduct a benchmark study about bias in DBRD data and propose a new ap-

proach for DBRD. First, we investigate the significance of age bias, state bias, and

issue tracking system (ITS) bias in evaluating DBRD techniques. The result depicts

that age bias and ITS bias have significant impacts, while state bias has no signifi-

cant impact. Next, we provide a rich dataset containing recent three-year BRs from

Bugzilla, Jira, and GitHub ITSs of six projects. We evaluate state-of-the-art DBRD

research tools on a revised dataset that addresses age and ITS biases, and the result

shows a simple retrieval-based approach can beat recently proposed sophisticated

deep learning-based models. We also compare state-of-the-art DBRD research tools

with two industrial tools, i.e., (1) full-text search (FTS) implemented in Bugzilla ITS

and used by Mozilla, (2) VSCodeBot used by VSCode repository. The result shows

that FTS outperforms some research tools on some projects. The best-performing

research tools, however, can outperform FTS by 22.1% to 62.7% in terms of Recall

Rate@10. VSCodeBot is better than most research tools, but the best research tool

can outperform it by 9.8% in terms of Recall Rate@5. Furthermore, we propose

Cupid, which combines bLLMs with the traditional DBRD technique to enhance

the accuracy of DBRD in software systems with the typical number of BRs. We

evaluate Cupid on three datasets from open-source projects and compare Cupid

with three prior state-of-the-art approaches. The experimental results indicate that

Cupid surpasses the performance of these existing DBRD approaches. Notably, Cu-

pid achieves Recall Rate@10 scores ranging from 0.59 to 0.67 across all the datasets

analyzed.

• We introduce the task of automatic PR title generation. We construct a dataset

named PRTiger, which consists of 43,816 PRs from GitHub for the PR title generation

task. PRTiger is the first benchmark for this task. We conduct evaluation of state-

of-the-art summarization methods, including extractive (Oracle extraction, BERT-

SumExt [106]) and abstractive ones (PRSummarizer [107], iTAPE [46], BART [94],
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and T5 [132]). The evaluation includes both automatic evaluation and manual

evaluation from multiple aspects. The results show that BART outperforms other

approaches by significant margins.

1.2 Sentiment Analysis

SA is a computational study of people’s opinions, attitudes, and emotions toward an entity,

which can be an individual, an event, or a topic [112]. SA4SE has drawn much attention

in recent years [74, 85, 164, 79, 22, 80, 123, 99, 121]. Most research considers SA to be a

sentiment polarity classification task. For a given text unit, the goal is to determine its

sentiment orientation, i.e., negative, neutral, or positive.

Prior studies have demonstrated that general SA tools work well on social media posts or

product reviews while performing poorly on SE datasets [85, 157]. This discrepancy has

spurred a growing interest in developing SE-specific SA tools over the past decade [22, 47,

82]. These SA4SE tools usually either propose a SE-specific lexicon [82] or a SE-specific

model [22]. At the same time, several benchmarking studies on evaluating general SA

tools and SE-specific tools have been conducted [99, 187, 123, 85].

1.3 Duplicate Bug Report Detection

As software systems become larger and more complex, they inevitably contain bugs. Bug

reports (BRs) are the main channel for users to report bugs to developers. Most software

projects use issue tracking systems (ITSs), such as Bugzilla [11], Jira [16] and GitHub [13],

to manage BRs and track the progress of bug fixing. Users can submit a BR to the issue

tracking system when they find a bug. Then, the developers will fix the bug according
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to the description in the BR. However, many BRs are duplicates of the existing BRs. For

example, in the dataset constructed by Lazar et al. [93], duplicate BRs represent 12.67% -

23% out of the total BRs in a system.

The existence of duplicate BRs may cost extra software maintenance efforts in bug triage

and fixing [91]. In practice, duplicate BRs can also be hard to identify. For example, prior

research [134] found duplicate BRs taking thousands of days to identify, with up to 230

comments, involving up to 75 people. This kind of BRs consumed much effort before it

was finally identified as duplicate. Identifying duplicate BRs as soon as possible is crucial

to avoid wasting developers’ time and effort on fixing the same bug multiple times. To

alleviate the heavy burden of triagers and decrease the cost of software maintenance,

many automatic techniques have been proposed in the past decade [153, 191, 23, 138].

Among them, DBRD techniques have been deployed in practice. For example, some ITSs

provide recommendations of potential duplicates to a reporter before submitting a BR.

Others employ a bot that flags a duplicate after it has been submitted. For both scenarios,

a ranked list of potential duplicate BRs is produced for manual inspection.

1.4 Pull Request Title Generation

As an emerging paradigm, pull-based software development has been widely applied

in distributed software development [67, 176]. With the pull-based development model,

the project’s main repository is not shared for direct modification among contributors [69].

Instead, contributors fork or clone the repository and make changes on their own branch.

When their changes are ready to be merged into the main branch, they create Pull Requests

(PRs); the core team (i.e., the integrators) then review the changes made in the PRs to make

sure that the changes satisfy functional (e.g., no compile error and test failure) and non-

functional requirements (e.g., abide to coding convention). They may propose corrections,
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discuss with the contributors, and eventually accept or reject the changes [68]. PRs are

utilized in nearly half of the collaborative projects in GitHub [69]. Pull-request-based de-

velopment is usually associated with reduced review times and many contributions [192].

Generally, a PR consists of a title, a description (optional), and a set of commits. The PR

title and description are designed to help the readers (not limited to integrators, but refers

to anyone reading the PR) grasp the context and purpose of the PR. Frequently, a PR is

linked with one or more issue reports. Issue reports in issue tracking systems (e.g., GitHub

issues) are used to keep track of bugs, enhancements, or other requests. Therefore, many

PRs contain the identifiers of the linked issues in their titles or descriptions.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows.

Chapter 2: Sentiment Analysis

This chapter presents our study on the SA of SE artifacts. We have one published work

on leveraging sLLMs for SA; the other work is under review, which compares the sLLMs

and bLLMs on this task.

Chapter 3: Duplicate Bug Report Detection

This chapter presents the study we conducted on detecting duplicate BRs. We have one

published work on benchmarking DBRD, and the other is under review, introducing a

new approach to more accurate DBRD.

Chapter 4: Pull Request Title Generation

This chapter provides the first study on automatically generating pull request titles.

Chapter 5: Related Work
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This chapter presents an overview of related work on SA, duplicate bug report detection,

and pull request title generation.

Chapter 6: Conclusion and Future Work

This chapter presents an overview of related work on the four tasks investigated.



Chapter 2

Sentiment Analysis

This chapter presents two empirical studies on SA4SE, i.e, in Section 2.1, we compare

sLLMs with prior SA4SE tools, and in Section 2.2, we compare sLLMs and bLLMs.

2.1 How Prior SA4SE Tools Compare to sLLMs?

To understand the performance of SA4SE tools, three benchmarking studies have been

conducted: Lin et al. [99] compared five SA tools, i.e., SentiStrength, NLTK, Stanford

CoreNLP, SentiStrength-SE, and Stanford CoreNLP SO on three datasets – mobile APP

reviews, Stack Overflow posts, and Jira issue comments. Regarding the number of correct

predictions, SentiStrength-SE, Stanford CoreNLP, and SentiStrength perform the best for

one of the datasets. Islam et al. [80] compared three SA4SE tools, i.e., SentiStrength-SE,

Senti4SD, and EmoTxt, on three datasets – Jira issue comments, Stack Overflow posts, and

code review comments. SentiStrength-SE achieved the highest macro-averaged F1-score

for Jira issue comment and code review comment datasets. At the same time, Senti4SD

performed the best for the Stack Overflow post dataset. Novielli et al. [123] compared four

9
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tools, i.e., Senti4SD, SentiStrength-SE, SentiCR, and SentiStrength, on four datasets – Stack

Overflow posts, Jira issue comments, code reviews comments, and Stack Overflow posts

related to Java libraries.1 They found that Senti4SD achieved the highest macro-averaged

F1 score for the Stack Overflow dataset, while SentiCR was the highest for the other three

datasets.

Inspired by these three studies, we raise the main research question: How well can pre-

trained sLLMs perform for SA4SE task? To answer the question, we conduct a large-scale

exploratory study. Specifically, we (1) consider a diverse collection of six datasets (instead

of three or four considered in prior work), (2) compare the effectiveness of the best per-

formers in prior work [99, 80, 123] with state-of-the-art sLLMs. This study investigates the

following specific research questions:

• RQ1: How accurate are sLLMs as compared to existing SA4SE tools?

• RQ2: How efficient are sLLMs as compared to existing SA4SE tools?

To answer the above questions, we compare the accuracy and efficiency of the best-

performing SA4SE approaches in prior studies against four sLLMs. Prior studies [99, 80,

123] have highlighted that Stanford CoreNLP, SentiStrength, SentiStrength-SE, SentiCR,

and SentiSD are the best performers on at least one dataset. For sLLMs, we consider

BERT [55], RoBERTa [107], XLNet [175], and ALBERT [92]. We fine-tune these models with

labeled SE-specific data for SA4SE tasks.2 We evaluate the approaches on six datasets: API

reviews (API), Stack Overflow posts (StackOverflow), Mobile APP reviews (GooglePlay),

GitHub pull-request and commit comments (GitHub), Jira issue comments (Jira), and

Gerrit code review comments (Gerrit).

1They referred to the dataset as ’Java Libraries’ and it is the Stack Overflow dataset from Lin et al.’s work

[99].

2For brevity, unless otherwise stated, we refer to these fine-tuned sLLMs as sLLMs.
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The experimental results demonstrate that in all the six datasets, sLLMs, i.e., BERT,

RoBERTa, XLNet, and ALBERT, can achieve better performance than the best perform-

ing SA4SE tools identified in prior studies [99, 80, 123]. Across these datasets, sLLMs

consistently outperform previous SA4SE tools by 6.5% to 35.6% in terms of macro/micro-

averaged F1-scores. This accuracy boost comes with some runtime costs: sLLMs are less

efficient than existing SA4SE approaches (except Senti4SD and Stanford CoreNLP). Still,

its runtime cost is not prohibitively high; it requires 15 seconds to 10 minutes to fine-tune,

while it can predict sentiments of hundreds of text units (documents) in seconds.

2.1.1 Experimented Techniques

Prior SA4SE Tools

In this section, we briefly describe details about the best-performing approaches iden-

tified by the prior benchmarking works [99, 80, 123]: Stanford CoreNLP, SentiStrength,

SentiStrength-SE, SentiCR, and Senti4SD. We refer to them collectively as the PRIOR

group.

Stanford CoreNLP, proposed by Socher et al. [149], is designed for single-sentence senti-

ment classification; it can return a sentiment value and polarity for a sentence. Socher et

al. introduced the Stanford Sentiment Treebank, which includes fine-grained sentiment

labels for 215,154 phrases in the parse trees. The parse trees consist of 11,855 sentences ex-

tracted from the movie review dataset, initially constructed by Pang and Lee [30]. Socher

et al. also proposed a new model called Recursive Neural Tensor Network to capture

the compositional effects with higher accuracy. Stanford CoreNLP is trained with this

Recursive Neural Tensor Network on the Stanford Sentiment Treebank.

SentiStrength is a lexicon-based approach developed by Thelwall et al. [156]. As a lexicon-
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based approach, SentiStrength has several dictionaries, including both formal terms and

informal texts (such as emoticons, idioms, and slang). In these dictionaries, each term

is labeled with a sentiment strength. Based on these dictionaries and linguistic analysis,

given a sentence, SentiStrength will output two integers: one is for positive emotion,

and the other is for negative emotion. It not only categorizes the emotional polarity but

also gives the strength of the polarity. The scale for positive emotion is from 1 to 5,

representing not positive to very strong positive; the range for negative emotion is from

-1 to -5, representing not negative to very strong negative.

SentiStrength-SE, proposed by Islam and Zibran, is a customized version of SentiStrength,

implemented by adding a domain-specific dictionary [79]. SentiStrength-SE is also the first

SA tool considering SE-specific context, and it is designed based on in-depth qualitative

research. Specifically, Islam and Zibran first used SentiStrength to detect sentiment in

Jira issue comments. They analyzed 151 Jira issue comments for which SentiStrength

produced wrong outputs. This analysis was performed to identify the reasons/difficulties

that affect the accuracy of SentiStrength. Finally, they identified 12 such difficulties. They

also found that out of all the difficulties, the domain-specific meanings of words were

the most prevalent. To build a domain dictionary, they first collected a large dataset of

commit messages drawn from 50 open-source projects from GitHub provided by their

earlier work [78]. Then, they extracted the lemmatizations of all words in the dataset.

Next, they kept the overlap between these word lemmatizations and the SentiStrength

dictionary of sentiment words. A total of 716 words remain. Through manual assessments,

they further eliminated words that carry neutral sentiments. Finally, the final word

dictionary of SentiStrength-SE consists of 500 words, of which 167 are positive and 293

are negative. They also extended the dictionary by adding new sentiment words and

negations. Additionally, contextual information is considered in SentiStrength-SE.

SentiCR [22] is designed by Ahmed et al., particularly for code review comments. Based



CHAPTER 2. SENTIMENT ANALYSIS 13

on the characteristics of code review comments, SentiCR has a suite of data preprocessing

steps, including URL removal and code snippet removal. SentiCR includes a two-stage

negation preprocessing approach. Ahmed et al. first build a chunk grammar (i.e., a set

of rules indicating how sentences should be chunked) for NLTK RegexpChunkParser to

identify negation phrases. Second, they modify all the verbs, adjectives, and adverbs in a

negation phrase identified by the chunker by prepending not to it [22]. After generating

feature vectors using TF-IDF, eight supervised classifiers are evaluated. They also use

10-fold cross-validation to validate each algorithm. GBT (Gradient Boosting Tree) [128]

demonstrates the highest precision, recall, and accuracy among all the eight used algo-

rithms. Thus, by default, the supervised classifier in SentiCR is GBT. The original SentiCR

is trained to classify a code review comment as negative or non-negative.

Senti4SD is another supervised learning-based tool. The largest difference between

Senti4SD and previous SE-specific tools is how it generates feature vectors. Senti4SD [42]

utilizes three features based on (1) Generic sentiment lexicons. It uses SentiStrength lex-

icons; (2) Keywords (n-gram extracted from the dataset). It primarily uses uni-gram and

bi-gram. The value of each keyword feature corresponds to its number of occurrences.

In addition to uni-gram and bi-gram, it includes other keyword features, e.g., total occur-

rences of uppercase words and slang expressions for laughter; (3) Word representation in

a distributional semantic model (DSM) specifically trained on Stack Overflow data. DSM

uses the CBOW architecture implemented by word2vec [114]. Each Stack Overflow doc-

ument (i.e., answers, questions, and comments) is represented as the vector sum of all the

vectors of words in the document. Besides, it calculates four prototype vectors, namely,

p_pos, p_neg, p_neu, and p_subj, respectively. p_pos is the sum of all the word vectors

in each document, which have positive polarity in the SentiStrength lexicon dictionary.

Similarly, by summing up all the negative/neutral word vectors in the document, we have

p_neg and p_neu. p_subj is the sum of p_pos and p_neg. Using these four objective vectors
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for a document, Senti4SD calculates the similarity scores between document vectors to get

the semantic features. Finally, based on the features mentioned above, Senti4SD is trained

to distinguish sentiment polarities of text units by using Support Vector Machines (SVM).

sLLMs

We provide a brief introduction to BERT, RoBERTa, XLNet, and ALBERT. We refer to these

models collectively as the sLLMs (smaller-size large language models) group. We also

present the exact model we used on the Hugging Face platform [168] in the parenthesis.

BERT (bert-base-uncased) [55], which stands for Bidirectional Encoder Representations

from Transformers, introduces two key pre-training tasks. The first is mask language

modeling (MLM), where BERT learns to predict masked words in a given text. Addi-

tionally, BERT incorporates the next sentence prediction (NSP) task, training to determine

whether the second sentence logically follows the first or is a random sentence from the

training data.

RoBERTa (roberta-base) [107] is short for “A Robustly Optimized BERT Pretraining

Approach”. RoBERTa is a BERT variant distinguished by its innovative training strategies

and hyperparameter choices. Notably, it eliminates the NSP task, employs a larger batch

size, trains on a larger corpus than BERT, and utilizes a dynamic masking strategy during

training.

ALBERT (albert-base-v2) [92], or “A Lite BERT”, is another BERT variant designed

to reduce model size and computational requirements while maintaining or improving

performance. ALBERT retains the MLM task but replaces the NSP task with the sentence

order prediction (SOP) task. In SOP, ALBERT is trained to predict whether pairs of

sentences are correctly ordered or if their positions have been swapped.
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Table 2.1: Investigated datasets

dataset # doc # (%) positive # (%) neutral # (%) negative

API 4,522 890 (19.7) 3,136 (69.3) 496 (11)
StackOverflow 1,500 131 (8.7) 1,191 (79.4) 178 (11.9)
GooglePlay 341 186 (54.5) 25 (7.3) 130 (38.1)
GitHub 7,122 2,013 (28.3) 3,022 (42.4) 2,087 (29.3)
Jira 926 290 (31.3) - 636 (68.7)

# doc # (%) non-negative # (%) negative

Gerrit 1,600 1,202 (75.1) 398 (24.9)

XLNet (xlnet-base-cased) [175] primarily focuses on capturing contextual information

and long-range dependencies in text. It employs an autoregressive pretraining method

and introduces permutation language modeling, where word order in a sentence is ran-

domly shuffled, and the model is trained to predict the original sequence. XLNet also

incorporates innovations such as the “two-stream self-attention” mechanism.

2.1.2 Study Setup

This section first describes the six datasets used in this work, and defines the SA task based

on the polarity labels in the datasets. Then, we elaborate on the implementations of all the

considered approaches. Lastly, we describe the relevant evaluation metrics and settings.

Datasets

In this comparative study, we use six publicly available datasets with annotated sentiment

polarities. Table 2.1 shows the detailed statistics of the six datasets, including the total

number of documents in a dataset (# doc) and the number (and percentage) of documents

with one of the sentiment polarities (e.g., # (%) positive, # (%) neutral, # (%) negative).
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API reviews (API) [161]. It includes 4,522 sentences from 1,338 Stack Overflow posts. This

dataset contains both API aspects and the polarities of provided opinions, i.e., positive,

negative, and neutral), curated by Uddin and Khomh.

Besides this API dataset, we experimented with the existing manually labeled datasets

from five distinct platforms: Gerrit, GitHub, Google Play, Jira, and Stack Overflow. For

simplicity, we refer to these datasets using abbreviations: Gerrit, GitHub, GooglePlay,

Jira, and StackOverflow.

Gerrit Dataset: Ahmed et al. [22] meticulously labeled this dataset. They initiated their

process by mining code review repositories from 20 prominent open-source software

(OSS) projects. Three raters individually labeled the selected code review comments and

resolved conflicts through discussion. The dataset was refined into two classes: negative

and non-negative, forming the final dataset.

GitHub Dataset: Novielli et al. [121] curated the GitHub dataset, which comprises pull

request and commit comments. Sentiment was assessed based on the entire comment,

rather than isolated portions. The labeling process began with the manual classification

of 4,000 comments, followed by a semi-automatic approach using Senti4SD [42], which

required manual confirmation of the automatically assigned polarity labels.

GooglePlay, Jira, and StackOverflow Datasets: Lin et al. [99] provided three datasets,

each with its unique characteristics:

• GooglePlay Dataset: Originally collected by Chen et al. [45], this dataset contains

user reviews of Android apps on Google Play. Villarroel et al. [164] selected a subset

of reviews from Chen et al.’s dataset, and Lin et al. further sampled 341 reviews.

Lin et al. performed the manual labeling of sentiment, where two annotators indi-
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vidually classified text as positive, neutral, or negative. In cases of disagreement, a

third evaluator was involved for resolution.

• Jira Dataset: This dataset comprises Jira issue comment sentences and was orig-

inally collected and labeled by Ortu et al. [126]. However, Ortu et al.’s dataset only

provided emotional labels, such as love, joy, anger, and sadness. Lin et al. mapped

sentences labeled with love or joy to “positive” and those labeled with anger or sadness

to “negative”.

• StackOverflowDataset: Lin et al. gathered and labeled the StackOverflow dataset,

extracting 5,073,452 sentences from the latest Stack Overflow dump available in July

2017. The sentences were selected based on two criteria: they had to be tagged with

“Java”, and they needed to contain keywords such as “library/libraries” or “API (s)”.

A random sample of 1,500 sentences was manually labeled by assigning a sentiment

score to each sentence. Two annotators did the manual annotation individually, with

conflicts resolved through discussion.

We considered all the three datasets used in Lin et al.’s benchmarking work [99] – mo-

bile APP reviews (GooglePlay), Stack Overflow posts (StackOverflow), and Jira issue

comments (Jira). We include another three datasets (i.e., GitHub, API, and Gerrit) with

diverse characteristics in at least four aspects. First, the added three datasets were con-

structed from various repositories: pull-request and issue comments from GitHub [121];

API reviews from Stack Overflow [161]; and Gerrit code review comments from open-

source projects [22]. Second, the sizes of the three datasets differ significantly. For example,

the GitHub dataset is over 20 times larger than the mobile APP reviews. Third, among

the three datasets, the GitHub dataset is balanced in the number of positive, neutral, and

negative text units, while the other two are imbalanced. Fourth, unlike the other two,

the code review comment dataset only has two sentiment polarities: non-negative and
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negative.

For a given text unit, each approach will predict its sentiment polarity label. According to

the number of sentiment polarities in a dataset, we formulate the problem as a binary or

ternary text classification task. Specifically, the classification tasks for the datasetsJira and

Gerrit correspond to binary classification tasks. Both datasets have two polarity labels:

positive and negative for Jira; negative and non-negative for Gerrit. For the other four

datasets, the classification problems are formulated as ternary-class classification tasks as

they have three polarity labels, i.e., positive, neutral, and negative.

Implementations

SA4SE Tools: For Stanford CoreNLP3, we used its Python wrapper4. Given a sentence,

Stanford CoreNLP returns the sentiment polarity with its corresponding sentiment value

(Very negative=0, Negative=1, Neutral=2, Positive=3, Very positive=4). As Stanford CoreNLP

gives a sentiment value and polarity to individual sentences, when a text unit in some

datasets has more than one sentence, we calculate the average sentiment value of all

sentences for the text unit. If the average sentiment value of a text unit is greater than 2,

we assign it a positive polarity; if the value is less than 2, we assign it a negative polarity;

otherwise, we assign it a neutral polarity (c.f. [99]).

For SentiStrength5 and SentiStrength-SE6, following Lin et al., we sum up the two sentiment

strength scores returned by the tool to get the overall polarity for a sentence. If the total

score is greater than 0, we assign a positive polarity to the whole text unit; if the total score

3http://stanfordnlp.github.io/CoreNLP/

4https://github.com/smilli/py-corenlp/

5http://sentistrength.wlv.ac.uk/download.html

6https://laser.cs.uno.edu/Projects/Projects.html

http://stanfordnlp.github.io/CoreNLP/
https://github.com/smilli/py-corenlp/
http://sentistrength.wlv.ac.uk/download.html
https://laser.cs.uno.edu/Projects/Projects.html
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is less than 0, we assign a negative polarity, and a neutral polarity is for the text unit that has

a total score of 0. For the code review comment dataset, we need to distinguish between

non-negative and negative; hence, if the overall score is less than 0, we assign negative to the

text unit; otherwise, we assign non-negative to it.

SentiCR7 only classifies two polarities, i.e., negative and non-negative. We re-train it on

each dataset to classify three polarities, i.e., positive, neutral, and negative. We only

changed the training dataset and kept all the parameters as default.

For Senti4SD, we use the classifier pre-trained on Stack Overflow dataset8. Senti4SD can

classify three polarities, i.e., positive, neutral, and negative. As the code review comment

dataset only has negative and non-negative polarities, we assign both the positive and neutral

as non-negative.

sLLMs. Many existing sLLMs are pre-trained for general domains. For instance, a

combination of BooksCorpus [193] and English Wikipedia is used as all or part of the

BERT and XLNet pre-training corpus. To build a sentiment classification model, we add a

feed-forward dense layer and softmax activation function on top of each model. A certain

pre-trained model’s parameters have been reused as a starting point. We feed our SE

training data to a pre-trained sLLM’s tokenizer and get the required formatted data; Then,

we use the formatted data to train the pre-trained model further to get a fine-tuned model.

Finally, we test it on the held-out test data. As found in BERT paper [55], the following

values of hyper-parameter for BERT fine-tuning procedure work well across all tasks: (1)

Batch size: 16, 32; (2) Number of epochs: 2, 3, 4; (3) Learning rate (Adam): 5e-5, 3e-5, 2e-5.

For all these models, we run them in 4 epochs with a batch size of 16. Moreover, we set

the learning rate to 2e-5. We used AdamW optimizer.

7https://github.com/senticr/SentiCR

8https://github.com/collab-uniba/Senti4SD

https://github.com/senticr/SentiCR
https://github.com/collab-uniba/Senti4SD
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Evaluation Metrics

Following the previous work [123], we report the precision, recall, and F1-score of each

approach for each polarity. We also report the macro- and micro-averaged metrics to

show overall multi-classification performances. The formula to calculate 𝑃 (precision), 𝑅

(recall) and 𝐹1 (F1-score) are as follows: 𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 ,𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , and 𝐹1 = 2 · 𝑃·𝑅
𝑃+𝑅 . 𝑇𝑃 refers

to the number of true positives (text units correctly classified as positive), 𝐹𝑃 refers to the

number of false positives (text units mistakenly classified as positive), and 𝐹𝑁 refers to

false negatives (text units mistakenly classified as negative).

The macro-averaged metric regards the measurement of each sentiment class equally. It

takes the precision, recall, and F1-score of each class and then averages them. The micro-

averaged metric calculates measurement over all data points in all classes and tends to be

mainly influenced by the performance of the majority class [123]. The formulas for macro-

and micro-averaged precision (P) are shown below:

𝑃𝑚𝑎𝑐𝑟𝑜 =

∑𝑘
𝑖=1 𝑃𝑖

𝑘
(2.1)

𝑃𝑚𝑖𝑐𝑟𝑜 =

∑𝑘
𝑖=1 𝑇𝑃𝑖∑𝑘

𝑖=1 𝑇𝑃𝑖 +
∑𝑘

𝑖=1 𝐹𝑃𝑖

(2.2)

𝑃𝑚𝑎𝑐𝑟𝑜 and 𝑃𝑚𝑖𝑐𝑟𝑜 represent macro- and micro-averaged precision respectively. 𝑃𝑖 , 𝑇𝑃𝑖

and 𝐹𝑃𝑖 represent the precision, number of true positives, and number of false positives

for the 𝑖th class, respectively. 𝑘 denotes the number of sentiment polarity classes. We

can calculate macro- and micro-averaged recall and F1, denoted as 𝑅𝑚𝑎𝑐𝑟𝑜 , 𝑅𝑚𝑖𝑐𝑟𝑜 , 𝐹1𝑚𝑎𝑐𝑟𝑜 ,

𝐹1𝑚𝑖𝑐𝑟𝑜 , similarly. We consider a model is better than another only when it achieves higher

values of both 𝐹1𝑚𝑎𝑐𝑟𝑜 and 𝐹1𝑚𝑖𝑐𝑟𝑜 .



CHAPTER 2. SENTIMENT ANALYSIS 21

Experimental Setting

Following Novielli et al. [123], we split each dataset into a training set (70%) and a test set

(30%). Since SentiCR is originally designed for binary classification, we re-train it using

the training set and test it on the test set for three classes. For Senti4SD, SentiStrength, and

SentiStrength-SE, they do not need re-training. Concerning the four sLLMs, we fine-tune

them with the training set and then evaluate them on the test set.

2.1.3 Study Results

In this section, we report the performance of the nine SA approaches on the six datasets

described in Section 2.1.2. For each dataset, we highlight the best performance of the two

main metrics (i.e., macro- and micro-averaged F1-scores) in bold. We answer the research

questions based on the experimental results as follows.

RQ1: How accurate are sLLMs as compared to existing SA4SE tools?

To answer RQ1, we compare all the nine approaches in both the PRIOR and sLLM groups.

Tables 2.2 and 2.3 present the performance of the nine approaches on the six datasets.

API and StackOverflow Datasets: Similar to the StackOverflow dataset, the API dataset

is constructed from Stack Overflow posts. Thus, we look at the results of both datasets

together. In terms of both macro- and micro-averaged F1, the approaches in sLLM group

outperform those in the PRIOR group. For the API dataset, The best performing sLLM

approach (ALBERT) can achieve macro- and micro-averaged F1-scores of 0.82 and 0.89,

respectively. On the other hand, the best-performing PRIOR approach (SentiCR) can only

achieve macro- and micro-averaged F1-scores of 0.66 and 0.82, respectively. We observe a
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Table 2.2: Results for API, StackOverflow, GooglePlay, and GitHub Datasets

Dataset Approach Positive Neutral Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1 P R F1

API

Stanford CoreNLP 0.47 0.41 0.44 0.85 0.60 0.71 0.22 0.66 0.33 0.51 0.56 0.49 0.57 0.57 0.57
SentiStrength 0.44 0.45 0.45 0.81 0.77 0.79 0.44 0.45 0.45 0.55 0.57 0.56 0.68 0.68 0.68
SentiStrength-SE 0.59 0.33 0.42 0.77 0.91 0.83 0.47 0.26 0.33 0.61 0.50 0.53 0.73 0.73 0.73
SentiCR 0.85 0.52 0.65 0.82 0.98 0.89 0.81 0.31 0.45 0.83 0.61 0.66 0.82 0.82 0.82
Senti4SD 0.56 0.33 0.41 0.76 0.93 0.84 0.44 0.10 0.17 0.59 0.45 0.47 0.73 0.73 0.73

BERT 0.85 0.72 0.78 0.92 0.95 0.93 0.73 0.73 0.73 0.83 0.80 0.81 0.89 0.89 0.89
RoBERTa 0.78 0.79 0.78 0.93 0.93 0.93 0.72 0.70 0.71 0.81 0.81 0.81 0.88 0.88 0.88
XLNet 0.75 0.75 0.75 0.91 0.91 0.91 0.63 0.59 0.61 0.76 0.75 0.76 0.85 0.85 0.85
ALBERT 0.88 0.77 0.82 0.92 0.96 0.94 0.71 0.68 0.70 0.84 0.80 0.82 0.89 0.89 0.89

StackOverflow

Stanford CoreNLP 0.23 0.42 0.30 0.92 0.69 0.79 0.34 0.82 0.48 0.50 0.64 0.52 0.68 0.68 0.68
SentiStrength 0.25 0.42 0.32 0.89 0.80 0.84 0.40 0.52 0.46 0.52 0.58 0.54 0.74 0.74 0.74
SentiStrength-SE 0.31 0.13 0.19 0.83 0.94 0.89 0.44 0.18 0.26 0.53 0.42 0.44 0.80 0.80 0.80
SentiCR 0.48 0.32 0.38 0.90 0.90 0.90 0.45 0.55 0.49 0.61 0.59 0.59 0.82 0.82 0.82
Senti4SD 0.50 0.34 0.41 0.85 0.96 0.90 0.75 0.14 0.23 0.70 0.48 0.51 0.83 0.83 0.83

BERT 0.65 0.63 0.64 0.94 0.95 0.94 0.73 0.68 0.71 0.77 0.75 0.76 0.90 0.90 0.90
RoBERTa 0.57 0.76 0.65 0.96 0.92 0.94 0.78 0.82 0.80 0.77 0.83 0.80 0.90 0.90 0.90
XLNet 0.50 0.76 0.60 0.96 0.90 0.93 0.74 0.84 0.79 0.73 0.83 0.77 0.88 0.88 0.88
ALBERT 0.71 0.32 0.44 0.90 0.95 0.92 0.61 0.61 0.61 0.74 0.63 0.66 0.86 0.86 0.86

GooglePlay

Stanford CoreNLP 0.77 0.68 0.72 0.14 0.43 0.21 0.69 0.54 0.61 0.53 0.55 0.51 0.61 0.61 0.61
SentiStrength 0.75 0.90 0.82 0.12 0.29 0.17 0.73 0.30 0.42 0.53 0.49 0.47 0.64 0.64 0.64
SentiStrength-SE 0.73 0.81 0.77 0.15 0.57 0.24 0.91 0.27 0.42 0.60 0.55 0.48 0.60 0.60 0.60
SentiCR 0.86 0.83 0.84 0.00 0.00 0.00 0.68 0.81 0.74 0.51 0.55 0.53 0.77 0.77 0.77
Senti4SD 0.72 0.85 0.78 0.12 0.29 0.17 0.65 0.30 0.41 0.50 0.48 0.45 0.61 0.61 0.61

BERT 0.86 0.95 0.90 0.00 0.00 0.00 0.87 0.89 0.88 0.58 0.61 0.59 0.86 0.86 0.86
RoBERTa 0.95 0.92 0.93 0.00 0.00 0.00 0.84 1.00 0.91 0.60 0.64 0.61 0.88 0.88 0.88
XLNet 0.87 0.98 0.92 0.00 0.00 0.00 0.86 0.81 0.83 0.57 0.60 0.58 0.85 0.85 0.85
ALBERT 0.91 0.86 0.89 0.00 0.00 0.00 0.72 0.92 0.81 0.54 0.59 0.57 0.83 0.83 0.83

GitHub

Stanford CoreNLP 0.61 0.36 0.45 0.44 0.40 0.42 0.40 0.61 0.48 0.48 0.46 0.45 0.45 0.45 0.45
SentiStrength 0.65 0.66 0.66 0.60 0.58 0.59 0.63 0.66 0.65 0.63 0.63 0.63 0.63 0.63 0.63
SentiStrength-SE 0.87 0.85 0.86 0.77 0.86 0.81 0.82 0.71 0.76 0.82 0.81 0.81 0.81 0.81 0.81
SentiCR 0.88 0.86 0.87 0.78 0.91 0.84 0.86 0.68 0.76 0.84 0.82 0.82 0.83 0.83 0.83
Senti4SD 0.79 0.84 0.82 0.69 0.86 0.76 0.82 0.47 0.60 0.77 0.73 0.73 0.74 0.74 0.74

BERT 0.92 0.95 0.93 0.90 0.92 0.91 0.93 0.87 0.90 0.92 0.91 0.92 0.92 0.92 0.92
RoBERTa 0.93 0.96 0.94 0.91 0.92 0.92 0.93 0.89 0.91 0.93 0.92 0.92 0.92 0.92 0.92
XLNet 0.90 0.97 0.94 0.94 0.89 0.91 0.91 0.92 0.91 0.92 0.93 0.92 0.92 0.92 0.92
ALBERT 0.91 0.93 0.92 0.85 0.94 0.89 0.94 0.78 0.85 0.90 0.88 0.89 0.89 0.89 0.89

similar finding for the StackOverflow dataset.

GooglePlay Dataset: We find that all the approaches perform relatively poorly on the

GooglePlay dataset. One potential reason is that this dataset is highly imbalanced and

quite small; there are only a few text units with a neutral sentiment. Due to this limited

number of text units for training, the approaches that have been trained on this dataset

(i.e., all sLLM approaches and SentiCR) have worse performance than the lexicon-based
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Table 2.3: Results for Jira and Gerrit Datasets

Dataset Approach Positive Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1

Jira

Stanford CoreNLP 0.83 0.50 0.62 0.96 0.63 0.76 0.60 0.38 0.46 0.58 0.58 0.58
SentiStrength 0.95 0.91 0.93 0.99 0.72 0.83 0.65 0.54 0.59 0.78 0.78 0.78
SentiStrength-SE 0.98 0.85 0.91 0.99 0.54 0.70 0.66 0.46 0.54 0.65 0.65 0.65
SentiCR 0.96 0.81 0.88 0.90 0.98 0.94 0.93 0.89 0.91 0.92 0.92 0.92
Senti4SD 0.90 0.86 0.88 1.00 0.21 0.34 0.63 0.35 0.41 0.44 0.44 0.44

BERT 0.99 0.96 0.97 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98
RoBERTa 0.98 0.96 0.97 0.98 0.99 0.98 0.98 0.97 0.98 0.97 0.97 0.97
XLNet 0.98 0.96 0.97 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.98
ALBERT 0.97 0.94 0.95 0.97 0.98 0.98 0.97 0.96 0.96 0.97 0.97 0.97

Dataset Approach Non-negative Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1

Gerrit

Stanford CoreNLP 0.91 0.55 0.69 0.37 0.83 0.51 0.64 0.69 0.60 0.62 0.62 0.62
SentiStrength 0.81 0.82 0.82 0.41 0.40 0.41 0.61 0.61 0.61 0.72 0.72 0.72
SentiStrength-SE 0.80 0.94 0.86 0.57 0.25 0.35 0.68 0.59 0.60 0.77 0.77 0.77
SentiCR 0.87 0.83 0.85 0.54 0.62 0.58 0.71 0.73 0.72 0.78 0.78 0.78
Senti4SD 0.78 0.97 0.86 0.60 0.16 0.25 0.69 0.56 0.56 0.77 0.77 0.77

BERT 0.94 0.87 0.90 0.67 0.83 0.74 0.80 0.85 0.82 0.86 0.86 0.86
RoBERTa 0.92 0.93 0.92 0.76 0.74 0.75 0.84 0.83 0.84 0.88 0.88 0.88
XLNet 0.87 0.95 0.91 0.78 0.54 0.64 0.82 0.75 0.77 0.85 0.85 0.85
ALBERT 0.90 0.84 0.87 0.59 0.72 0.65 0.75 0.78 0.76 0.81 0.81 0.81

approaches (i.e., SentiStrength and SentiStrength-SE) for the neutral sentiment. Still,

overall, we observe that approaches in the sLLM group outperform those in the PRIOR

group.

GitHub Dataset: Among all the six datasets, GitHub is the largest and most balanced

one. The four approaches from the sLLM group achieved similar performance: BERT,

RoBERTa, and XLNet produce the same macro- and micro-averaged F1-scores; ALBERT

performs slightly worse, 0.03 lower than the other three approaches. Their performance is

better than that for approaches in the PRIOR group. In the PRIOR group, SentiCR is the

best performer, with SentiStrength-SE being a close second. The other three approaches

produce substantially lower macro- and micro-averaged F1-scores. Stanford CoreNLP has
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Table 2.4: Comparison between the Best Performers in the PRIOR and sLLM Groups

Metric Group API StackOverflow GooglePlay GitHub Jira Gerrit

Macro-avg F1
Best PRIOR 0.66 0.59 0.53 0.82 0.91 0.72
Best sLLM 0.82 0.80 0.61 0.92 0.98 0.84
Improvement 24.2% 35.6% 15.1% 12.2% 7.7% 16.7%

Micro-avg F1
Best PRIOR 0.82 0.83 0.77 0.83 0.92 0.78
Best sLLM 0.89 0.90 0.88 0.92 0.98 0.88
Improvement 8.5% 8.4% 14.3% 10.8% 6.5% 12.8%

the worst performance, which shows that Stanford CoreNLP has poor generalization of

SE data across different repositories.

Jira Dataset: For the Jira dataset, we found that all the sLLM approaches perform

well with high macro- and micro-averaged F1-scores (≥ 0.96). However, in the PRIOR

group, only SentiCR achieves macro- and micro-averaged F1-scores greater than 0.90. The

other approaches in the PRIOR group have macro-averaged F1-scores lower than 0.6, and

micro-averaged F1-scores lower than 0.79. Two noteworthy facts are that SentiStrength

outperforms SentiStrength-SE by 20% in terms of the micro-averaged F1-score. Also,

Stanford CoreNLP outperforms Senti4SD by 31.8%. This shows that SE-specific SA tools

do not always outperform general-purpose ones in SE datasets. The performance of

different approaches from the PRIOR group gives us another insight: SentiStrength and

SentiStrength-SE are both lexicon-based and do not need training. They outperform

Stanford CoreNLP and Senti4SD, which have been trained in other datasets. SentiCR,

which has been re-trained in this Jira dataset, achieves the best result in the PRIOR

group. This highlights that the lexicon-based approaches may be better than supervised

ones (if training is not done on a suitable dataset).

Gerrit Dataset: For the dataset Gerrit, all the approaches perform better in detecting

non-negative polarity than negative polarity, with each sLLM approach outperforming all

PRIOR approaches. Also, all the approaches trained on the Gerrit dataset, including all
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sLLM approaches and SentiCR outperform the other four non-Gerrit specific tools (i.e.,

their training and construction did not involve Gerrit-datasets).

Overall: We found that the best and worst-performing approaches differ for different

datasets. Also, no approach can achieve the best performance on all datasets. For example,

RoBERTa achieves the highest micro-averaged F1-score while SentiStrength-SE has the

lowest score on the GooglePlay dataset. On API dataset, BERT and ALBERT achieve the

highest micro-averaged F1-score, while Stanford CoreNLP has the lowest score. Also, the

performance gap between the best and worst performance on different datasets varies.

The difference between micro-averaged F1-scores ranges from 32.4% (on StackOverflow)

to 122.7% (on Jira). For macro-averaged F1-scores, the difference is from 35.6% (on

GooglePlay) to 139% (on Jira).

Among all the approaches in the PRIOR group, we found that SentiCR achieves the best

performance on five out of six datasets except StackOverflow. Also, Stanford CoreNLP

performs the worst on five out of six datasets except on Jira. Among the approaches in

the sLLM group, we found that RoBERTa performs best on four datasets, i.e., GooglePlay,

GitHub, StackOverflow, andGerrit. ALBERT performs the worst onGooglePlay, GitHub,

StackOverflow, and Gerrit, but it performs best on API.

We also observed that all the sLLM approaches outperform PRIOR approaches up to

35.6% in terms of macro- and micro-averaged F1-scores (see Table 2.4). This demonstrates

the effectiveness of the sLLM approaches.

RQ1 Main Findings: The sLLMs outperform the prior SA4SE tools consistently across

the six datasets, although the best-performing model differs across different datasets.

The improvements achieved by the sLLMs range from 6.5% to 35.6% in terms of macro-

and micro-averaged F1-scores.
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Table 2.5: Training (or fine-tuning) and prediction time (seconds)

Approach API StackOverflow GooglePlay GitHub Jira Gerrit

Train Pred Train Pred Train Pred Train Pred Train Pred Train Pred

BERT 212.61 8.17 68.18 2.69 15.80 0.63 328.79 13.01 43.39 1.64 73.65 3.06
RoBERTa 215.02 7.87 71.77 2.62 15.91 0.59 338.64 12.42 43.78 1.61 76.35 2.91
XLNet 375.28 18.40 126.15 6.14 28.01 1.39 590.44 29.04 26.82 3.77 154.89 9.22
ALBERT 199.76 7.95 66.74 2.64 14.91 0.61 315.45 12.55 40.81 1.62 72.10 2.91

SentiCR 74.85 1.79 5.31 0.51 0.96 0.17 137.32 3.44 0.72 0.33 3.80 0.86
Senti4SD - 48.81 - 31.11 - 23.59 - 63.95 - 27.88 - 31.62
Stanford CoreNLP - 283.39 - 28.63 - 11.29 - 418.65 - 11.89 - 280.59
SentiStrength - <1 - <1 - <1 - <1 - <1 - <1
SentiStrength-SE - 1.69 - <1 - <1 - 3.22 - <1 - <1

RQ2: How efficient are sLLMs as compared to existing SA4SE tools?

The time efficiency of SA4SE approaches can be a concern in practice. Thus, we report

the training (fine-tuning for sLLM approaches) and prediction time of all the approaches.

Prediction time covers the time from processing the data to output the predicted label.

Here, we provide a manual estimation of the exact prediction time of SentiStrength and

SentiStrength-SE as they use a graphical user interface.

We run all the approaches on a desktop computer with Nvidia GeForce RTX 2080 Ti and

Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz. The sLLM group runs with both GPU and

CPU, which the PRIOR group only uses CPU. All approaches, except for SentiStrength, are

running with Ubuntu 18.04.4 LTS. SentiStrength runs on a Windows 10 virtual machine

on the Ubuntu system, because only its .exe is available online.

In Table 2.5, we report: the training (fine-tuning) time (in seconds) for each training set;

and the prediction time (in seconds) on each test set. For approaches in the sLLM group, in

terms of both fine-tuning and prediction time, XLNet takes the most time (approximately

double the time used by the other three approaches). For the approaches in the PRIOR

group, in terms of prediction time, Stanford CoreNLP is the most expensive and SentiCR

runs the fastest. Generally, the prediction time used by sLLMs is two times more than that
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of SentiStrength, SentiStrength-SE, and SentiCR. However, it is less than 50% of the time

used by Senti4SD 9 and Stanford CoreNLP.

RQ2 Main Findings: In general, training (fine tuning) is more expensive than predic-

tion. The time cost for fine-tuning the sLLMs ranges from 15 seconds to 10 minutes,

depending on the datasets used. In terms of prediction time, all approaches make

predictions for up to hundreds of text units (documents) within seconds. The sLLMs

cost less than 50% of Senti4SD and Stanford CoreNLP to make predictions, but cost two

times more than the time needed by SentiCR, SentiStrength, and SentiStrength-SE.

2.1.4 Discussion

This section presents the lessons learned from our experiments and discusses threats to

validity.

Lessons Learned

Fine-tuning sLLMs is promising for SA4SE. Lin et al. [99] mentioned that no prior

SA4SE tool is ready for real usage of identifying sentiment expressed in SE data yet.

We get similar results when applying the same approach (i.e., Stanford CoreNLP) to

Stack Overflow posts (i.e., StackOverflow dataset). On the other hand, we found that

even the worst-performing sLLM (i.e., ALBERT) achieves 0.66 in terms of macro-averaged

F1-score, which outperforms Stanford CoreNLP by 27%. The micro-averaged F1-scores

9In our study, we utilized the original implementation of Senti4SD (https://github.com/

collab-uniba/Senti4SD/). An alternative implementation (https://github.com/collab-uniba/

pySenti4SD/) might offer enhanced efficiency. Evaluating and comparing these implementations remains

an area for future research.

https://github.com/collab-uniba/Senti4SD/
https://github.com/collab-uniba/Senti4SD/
https://github.com/collab-uniba/pySenti4SD/
https://github.com/collab-uniba/pySenti4SD/
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produced by the sLLMs range from 0.86 to 0.90. The promising effectiveness of sLLM-

based approaches has also been observed on the other five datasets. Although there is

no gold standard or concrete thresholds of various evaluation metrics to decide whether

a SA4SE tool can be put into real use, our experiment results show that the sLLM-based

approach is more ready than the existing techniques for SA in SE. Thus, we encourage

researchers to consider simply fine-tuning pre-trained sLLM-based approaches as the

baseline in future work. Moreover, we advocate inventing more advanced sLLM-based

models to make SE-specific SA tools more practical.

Specific training (or fine-tuning) can boost performance. The approaches can be divided

into two groups based on whether they are trained (or fine-tuned) on specific datasets

or not. We fine-tuned all the sLLMs and trained SentiCR for each dataset. Based on

our results, we found that all the approaches that have been trained (or fine-tuned) on SE

datasets outperform those that have not been trained (or fine-tuned) across all six datasets.

Moreover, we find that Senti4SD, which is designed based on Stack Overflow data [42],

performs the best for API and StackOverflow datasets. These indicate that a tool trained

on the same data source can perform better for the same or similar data sources.

Challenges in assigning sentiment labels. Previous work [99] shows that even human

raters have more than 18% disagreements on the same sentences as sentiment identifi-

cation may be subjective. We also observed that it is hard to determine the sentiment

labels of some sentences. For example, the sentence “It’s always sad to see a reference like

that go, but it was probably a good move.” is labeled as negative. However, part of it (i.e.,

“it was probably a good move”) should be considered as positive. Thus, there may be a

need to introduce additional labels, e.g., mixed sentiment, or to go more fine-grained (i.e.,

attaching sentiment labels to phrases instead of sentences). Customized solutions may

boost performance further. We also found that no approach can always achieve the best

performance on all six datasets. It indicates that customization of the technical design is
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XLNet Correct Predictions

85286 1681

SentiCR Correct Predictions

Figure 2.1: The Venn diagram of the correct predictions made by XLNet and SentiCR

also required in future work. It would be interesting to extend the current sLLM-based

models to consider the specific properties of the SE datasets that we have.

Composition of different solutions may boost performance further. We find that

some sentences can only be assigned correct sentiment labels by the (generally) under-

performing SA4SE solution. To illustrate this, we conducted a brief error analysis on

the largest GitHub dataset to help understand the different performances of different ap-

proaches. In total, we have 2,137 sentences in the test set. We focus on comparing the

best performing approaches from the PRIOR and sLLM groups, i.e., SentiCR and XLNet.

Figure 2.1 depicts the correct predictions produced by the two approaches. Among all

the 2,137 sentences, XLNet and SentiCR correctly predict 1,967 (92%) and 1,766 (82%)

sentences; among them, 1,681 (78%) are in common. From the Venn diagram, we find

that although SentiCR performs worse (in general) than XLNet, for 85 sentences, it out-

performs SentiCR. Table VIII shows some examples where one of the approaches fails,

but the other is successful. Thus, by composing many different tools, we can boost the

performance further. As future work, we want to explore the possibility of combining all

the existing solutions for higher accuracy. Table 2.6 shows some examples of sentences

from the GitHub dataset with the prediction results produced by XLNet and SentiCR. For

each example, one of the two approaches makes a wrong prediction.
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Table 2.6: Prediction Examples

Sentence Label XLNet SentiCR

Yes, it would be really cool if you could update the wiki.
But don’t forget to say it will only work from version 1.4.0
forward!"

Positive Positive Negative

Thanks for your comments and tests! (Aptana is driving
me nuts, I’m currently searching for another IDE)

Positive Negative Positive

Looks good. Mind if I add a CityHash implementation in
here?

Neutral Positive Neutral

Strange indentation here Neutral Negative Neutral

Pretty simple script for a TBC boss I say. I wonder who did
it originally...

Negative Neutral Negative

If you mean #any_instance, you were better off not know-
ing. It’s a nasty code smell.

Negative Negative Neutral

Threats to Validity

Threats to internal validity in our study relate to errors we may have made in our ex-

periments and the quality of the manually labeled datasets utilized. We have released a

replication package10 for others to check and extend. Regarding the datasets, our research

relies on publicly available datasets previously used in other studies. Consequently, while

these datasets are integral to our analysis, we acknowledge that we inherit any inherent

quality limitations from these prior works. This inherited limitation represents a potential

constraint on our findings, as the original dataset quality has not been independently

verified in our study.

Threats to external validity are related to the generalizability of our research and experi-

ments. We consider six sentiment classification datasets, larger than those considered in a

closely related work [99]. These six datasets are diverse in several aspects, e.g., scale, type

of software artifacts, class distribution, etc. Our experimental setting follows Novielli et

10https://github.com/soarsmu/SA4SE

https://github.com/soarsmu/SA4SE
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al. [123], for each dataset, uses 70% for training (or fine-tuning) and 30% for testing. In the

future, we plan to employ k-fold cross-validation, a more rigorous evaluation method.

The threat to construct validity in our study arises primarily from the suitability of our

evaluation metrics. In assessing SA4SE solutions, metrics such as precision, recall, and

F1-score are commonly employed, as evidenced by their widespread use in the relevant

literature (e.g., [123, 161, 121]).

2.2 How sLLMs Compare to bLLMs?

In the prior section, we show that sLLMs can outperform prior SA4SE tools. However,

several challenges persist in the field of SA4SE with sLLMs. First, the accuracy of sLLMs

can degrade when there is a lack of labeled data for fine-tuning. For instance, the Google

Play dataset, which contains APP review comments, only has 341 labeled documents;

among them, 25 are neutral. The fine-tuned sLLMs predicted none of the data points in

the test set as neutral. While acquiring more labeled data can help mitigate this issue,

manually labeling large volumes of data is time-consuming. The second challenge relates

to the limitations of fine-tuning itself. Fine-tuning sLLMs requires updating some of the

model parameters with domain-specific data. Lastly, the third challenge occurs in cross-

platform settings [121], where SA4SE tools tend to perform poorly. Models trained from

one dataset may not generalize well when tested on a different dataset, hindering the

generalizability and effectiveness of existing SA4SE tools. Given these challenges, there is

a need to explore more effective solutions for SA4SE.

Recently, bLLMs have shown promising results in many areas, spanning from general

NLP tasks to specialized applications like software development. bLLMs are usually

trained on massive corpora of texts and contain many parameters. For instance, GPT-
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3 [37] is trained on 175 billion parameters. Llama [158] is trained on trillions of tokens

and contains 7B to 65B parameters. They have drastically reduced the domain-specific

training examples required for a particular application [50]. This adaptability has been

a game-changer in reducing the need for domain-specific training data, as bLLMs can

leverage their pre-existing knowledge to excel in diverse applications. bLLMs can make

predictions conditioned on a few input-output examples without updating any model

parameters and achieve success in various tasks [37, 50]. Nevertheless, their performance

in SA4SE remains largely unexplored. The intriguing prospect of adopting bLLMs in this

context lies in their ability to potentially address the challenges associated with fine-tuning

sLLMs and the limitations observed in cross-platform settings.

To fill this gap, our work embarks on a journey to explore the effectiveness of bLLMs for

SA4SE. To investigate the effectiveness of bLLMs for SA4SE, we conducted a comprehen-

sive empirical study on five existing SE datasets. We first evaluate bLLMs under zero-shot

and few-shot settings. For the zero-shot setting, we experimented with three different

prompt templates. For the few-shot setting, we experimented with 1-, 3-, and 5-shot. The

experimental results demonstrate that bLLMs can perform well under a zero-shot setting,

while few-shot learning can further boost the performance. However, adding more shots

does not guarantee an improvement in the performance. We also compared prompting

bLLMs with fine-tuning sLLMs. We find that, on a dataset that lacks training data and the

data is highly imbalanced, bLLMs can surpass sLLMs by a large gap. For the datasets that

contain sufficient training data and more balanced data, sLLMs may still be preferred.
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2.2.1 Experimented Language Models

bLLMs. We include three recently proposed bLLMs based on their performance in the

MMLU benchmark on the chatbot leaderboard 11 in August 2023; the model name in the

parenthesis is the exact model variant we used on the Hugging Face platform [168].

• Llama 2-Chat (meta-llama/Llama-2-13b-chat-hf) [159] is a fine-tuned version of

Llama 2 that is optimized for dialogue use cases. Llama 2 uses the standard Trans-

former architecture [163] and it applies pre-normalization with RMSNorm [181], the

SwiGLU activation function [148], and rotary positional embeddings [150]. Llama 2

made several improvements over Llama 1, including but not limited to more robust

data cleaning, trained on 40% more total tokens, and doubled the context length.

• Vicuna (lmsys/vicuna-13b-v1.5) [49] is a chatbot trained by fine-tuning Llama 2

on 70K user-shared ChatGPT conversations. To better handle multi-turn conversa-

tions and long sequences, Vicuna is trained with the enhanced training script from

Alpaca [155].

• WizardLM (WizardLM/WizardLM-13B-V1.2) [172] is another fine-tuned version of

Llama 2. The authors propose Evol-Instruct, a novel method using bLLMs instead of

humans to automatically mass-produce open-domain instructions of various com-

plexity levels to improve the performance of bLLMs. The resulting bLLMs by fine-

tuning Llama 2 with the evolved instructions is called WizardLM.

sLLMs. We include all the four sLLMs described in Section 2.1.1, i.e., BERT [55],

RoBERTa [107], ALBERT [92], XLNet [175]. In addition, we also include a lightweight

and memory-efficient variant of BERT, i.e., DistilBERT. We briefly describe DistilBERT

11https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Input: A chat between a 
curious user and an artificial 
intelligence assistant. The 
assistant gives helpful, 
detailed, and polite answers 
to the user's questions. 

USER: Please perform 
Sentiment Classification task. 
Given the sentence from APP 
reviews, assign a sentiment 
label from ['negative', 'neutral', 
'positive']. Return label only 
without any other text. 

ASSISTANT: Sure!</s> 

Sentence: its nice this apps is 
must lovely 

Output: ASSISTANT: positive 

Prompt 0 Prompt 1
Input: A chat between a 
curious user and an artificial 
intelligence assistant. The 
assistant gives helpful, 
detailed, and polite answers 
to the user's questions. 

USER: Please categorize the 
sentiment expressed in the 
following sentence from APP 
reviews as either (1) positive, 
(2) neutral, or (3) negative. 

ASSISTANT: Sure!</s> 

Sentence: its nice this apps is 
must lovely 

Output: ASSISTANT: positive 

Prompt 2
Input: A chat between a 
curious user and an artificial 
intelligence assistant. The 
assistant gives helpful, 
detailed, and polite answers 
to the user's questions. 

USER: I will give you a 
sentence from APP reviews. 
You need to reply with the 
sentiment expressed in the 
following sentence, either (1) 
positive, (2) neutral, or (3) 
negative. 

ASSISTANT: Sure!</s> 

Sentence: its nice this apps is 
must lovely 

Output: ASSISTANT: positive 

Figure 2.2: Zero-shot prompt template used by Vicuna and WizardLM.

here. Section 2.1.1 contains the description of the other four sLLMs. These sLLMs mainly

differ in the pre-training tasks adopted. We also present the exact model we used on the

Hugging Face platform [168] in the parenthesis.

DistilBERT (distilbert-base-uncased) [144] is a distilled and smaller version of the

BERT model. DistilBERT is designed to be faster and more memory-efficient. DistilBERT

adopts model compression or knowledge distillation to learn from a teacher BERT to cap-

ture the same knowledge but with fewer parameters. As DistilBERT combines efficiency

and strong performance, it has been popular in research and industry settings.

2.2.2 Study Setup

Research Questions

In this work, we plan to answer the following research questions (RQs):
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RQ1: How do various prompts affect the performance of bLLMs in zero-shot learning for the

SA4SE task?

In this RQ, our initial focus is exploring the zero-shot learning scenario, where bLLMs

are prompted without providing any labeled data. Prior studies have unveiled that

bLLMs exhibit varying results even when prompted with semantically similar queries [129,

110]. Additionally, certain research findings have emphasized the substantial impact of

different word orders within the prompt templates on the predictions [115, 53]. Given

the straightforward nature of SA, our objective is to formulate equally straightforward

prompts.

These prompts encompass two key components: the Task Description and the Output For-

mat. The Task Description serves the purpose of elucidating the task clearly and concisely.

In our specific context, the task pertains to SA, and we articulate it through various ex-

pressions within the three templates. Importantly, the sentence origin ( e.g., from APP

reviews, from Stack Overflow) remains consistent across all prompt templates, enabling

the distinction of diverse contexts and domains.

The Output Format component is designed to provide bLLMs with guidance for generating

responses in a specific format, facilitating the sentiment label extraction. To maintain

generality, we employ an identical prompt template for all five datasets.12 Figure 2.2 shows

the three prompt templates we used for zero-shot setting. While all prompt templates share

a semantic similarity, they differ in their syntactic structure. Our inspiration for the first

prompt template (i.e., Prompt 0) draws from Zhang et al. [188]. They designed the prompt

to include only essential components, namely the task name, task definition, and output

format. For Prompt 1 and Prompt 2, we introduce slight variations in expression.

12There is only a minor difference in the Jira dataset, given it only contains two sentiments, i.e., negative

and positive. We reduced the scope to only two options in the templates used by Jira.
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Input: <s>[INST] <<SYS>> 

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and 
polite answers to the user's questions. 

<</SYS>> 

Please perform Sentiment Classification task. Given the sentence from APP reviews, assign a sentiment label 
from ['negative', 'neutral', 'positive']. Return label only without any other text. 

Example Sentence: this app is a waste of time. i can log in but it always freezes and eventually crashes. i do 
not feel confident with the security on this app if wf can leave us hanging with a horrible app for such a big 
bank. uninstalled htc one 

Label: negative 

[/INST] 

Sure! 

</s><s>[INST] 

Sentence: good it's good app 

Label: 

[/INST] 

Output: Label: positive

Demonstration

Figure 2.3: Few-shot prompt template (with 𝑘 = 1) utilized by Llama 2-Chat.

RQ2: How do various shots affect the performance of bLLMs in few-shot learning for the SA4SE

task?

In the context of few-shot learning, we leverage the best-performing zero-shot prompt

template, namely Prompt 0. We enrich Prompt 0 with various numbers of examples filled

in the Demonstration part. The demonstration part encompasses 𝑘 (𝑘 = 1, 3, 5) examples

and corresponding ground-truth labels, adhering to the desired format.

Figure 2.3 illustrates the few-shot prompt template employed by Llama 2-Chat on the

GooglePlay dataset. In the depicted figure, the demonstration segment (enclosed within

the red box) comprises only one example. In the case of a 3-shot or 5-shot setup, this

demonstration section would encompass a greater number of example sentences and their

corresponding gold labels. We systematically sampled 1-, 3-, and 5-examples from the

training data of each dataset, subsequently populating the demonstration segment within

the template. This approach ensures that under the 𝑘-shot setting, different bLLMs receive
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Table 2.7: Dataset statistics. Neg. stands for negative, Neu. stands for neutral, Pos. stands
for positive, and Non-neg. stands for non-negative.

Dataset Total Test Sampled Avg.
Test Tokens

Gerrit 1,600: 398 (Neg.) 1,202 (Non-neg.) 160 114 29
GitHub 7,122: 2,087 (Neg.) 3,022 (Neu.) 2,013 (Pos.) 713 250 19
GooglePlay 341: 130 (Neg.) 25 (Neu.) 186 (Pos.) 35 33 27
Jira 926: 636 (Neg.) 290 (Pos.) 93 76 9
StackOverflow 1,500: 178 (Neg.) 1,191 (Neu.) 131 (Pos.) 150 109 11

the same set of examples.

RQ3: How do bLLMs compare with fine-tuned sLLMs on the SA4SE task?

We compare the best macro-F1 and micro-F1 obtained by prompting bLLMs and the

fine-tuned sLLMs.

Dataset

In this work, we experimented with the existing manually labeled datasets from five

distinct platforms: Gerrit, GitHub, Google Play, Jira, and Stack Overflow. The description

of these five datasets is available in Section 2.1.2.

We split each dataset with a ratio of 8:1:1, which stands for training, validation, and test,

respectively. We did a stratified split where we kept the original class distribution in

training, validation, and test. Since running bLLMs is expensive, they usually contain

billions of parameters, we did a sampling on all the test data with a confidence level of

95% and a margin of error of +/- 5%.13 Similarly, we also kept the class distribution the

same as in the original whole dataset.

13We included all the provided test data in the GooglePlay dataset, as the number of sampled data is

only 2 data points fewer than the whole test data.
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Table 2.7 presents the statistics of investigated datasets, specifically the average number of

tokens per document. Notably, Gerrit and GooglePlay exhibit longer text, likely due to

the inclusion of code review and APP review comments, which often span multiple sen-

tences. Although the GitHub dataset also comprises pull request and commit comments,

they are typically short in nature. Conversely, the StackOverflowdataset and Jiradataset

include sentences from Stack Overflow and Jira, respectively. While some document units

in these datasets contain multiple sentences and others just one, we collectively refer to

them as documents.

Evaluation Metrics

Following the prior works, we also use macro- and micro-averaged precision, recall, and

F1-score. Section 2.1.2 details the formula for calculating these metrics.

We report both the macro-F1 and micro-F1 scores as they show the balance between

precision and recall. We attach the full result in our replication package.14 From these

formulas, we can find that micro-F1 emphasizes overall accuracy, while macro-F1 gives

equal weight to each class’s performance. As we do not give weights to the classes and

want to consider the F1 in each class, we choose macro-F1 as the main metric. This choice

of preferring macro-F1 also aligns with the prior work [121].

Implementation Details

We run bLLMs and sLLMs on a machine with four NVIDIA RTX A5000. For bLLMs, we

run each model with four GPUs. For sLLMs, we fine-tune each model with one GPU.

14https://github.com/soarsmu/LLM4SA4SE

https://github.com/soarsmu/LLM4SA4SE
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Prompting bLLMs. We use heuristics to extract the sentiment returned by bLLMs. When

bLLMs consider it hard to decide the sentiment (they replied with a sentiment other than

the three polarities, e.g., “mixed”), we label the predicted sentiment as “neutral”. As

there is no “neutral” sentiment in the Jira dataset, if any LLM predicts the sentiment

as “neutral”, we label the predicted sentiment as the opposite of the ground-truth label.

In the few-shot setting, we select 𝑘 examples (“shots”) at random from the training set

((𝑘 = {1, 3, 5})), and for each example, we append its ground-truth label. To make a new

prediction for a new example, we append one sentence from the test set.

Fine-tuning sLLMs. We fine-tuned all the sLLMs with the training data. For each epoch,

we calculate their macro-F1 score on the validation data. We fine-tune each sLLM 5

epochs. We save the best-performing model, i.e., achieving the highest macro-F1 score on

the validation data, as the final model. We then evaluate the best model on the test data.

We used the following sets of hyper-parameters for all the sLLM: learning rate of 2e-5,

batch size of 32, and max length of 256.

2.2.3 Study Results

RQ1: Impact of different prompts on the performance of bLLMs with zero-shot learning

It is worth noting that Vicuna and WizardLM adopts the same style of prompt template;

while Llama 2-Chat employs a different prompt template in pre-training, resulting in

slight differences in prompt formats15 (We show an example of Llama 2-Chat prompt in

Figure 2.3, where the zero-shot template is the same template excluding the “Demonstra-

tion” part).

15https://huggingface.co/blog/llama2#how-to-prompt-llama-2

https://huggingface.co/blog/llama2#how-to-prompt-llama-2
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Table 2.8: Zero-shot Performance: Comparative Results of LLMs Across Five Datasets.
Cells highlighted in red indicate the highest scores achieved among the three prompts
executed by each respective model.

Model Variant Gerrit GitHub GooglePlay Jira StackOverflow

0 0.73 0.72 0.98 0.85 0.59
1 0.73 0.65 0.74 0.69 0.56Vicuna
2 0.7 0.67 0.82 0.75 0.53

0 0.69 0.71 0.8 0.81 0.41
1 0.69 0.7 0.82 0.82 0.59WizardLM
2 0.68 0.7 0.79 0.77 0.52

0 0.73 0.68 0.89 0.83 0.45
1 0.71 0.64 0.89 0.71 0.5

Macro-F1

Llama 2-Chat
2 0.75 0.68 0.89 0.78 0.51

0 0.81 0.72 0.97 0.86 0.78
1 0.82 0.66 0.8 0.71 0.82Vicuna
2 0.82 0.67 0.89 0.76 0.78

0 0.8 0.71 0.86 0.82 0.65
1 0.8 0.7 0.89 0.83 0.73WizardLM
2 0.79 0.7 0.89 0.78 0.67

0 0.82 0.68 0.91 0.84 0.61
1 0.82 0.64 0.91 0.71 0.72

Micro-F1

Llama 2-Chat
2 0.83 0.68 0.94 0.79 0.64

Table 2.8 presents the outcomes obtained from our investigation into three distinct bLLMs

using three distinct zero-shot prompts. Notably, we observe varying performance levels

among these bLLMs when employed with different prompt templates. Furthermore, it is

noteworthy that even when using the same LLM, the optimal prompt template can vary

depending on the dataset under consideration.

Specifically, regarding the macro-F1 score, Prompt 0 emerges as the most effective choice,

yielding the highest scores in 17 instances. Following closely, Prompt 1 leads in 13 in-

stances. Interestingly, Prompt 2, while achieving the top performance on only 9 occasions,

occasionally surpasses Prompt 1 by a significant margin, notably in the case of the Llama

2-Chat within the StackOverflow dataset. Regarding the micro-F1 scores, both Prompt

0 and Prompt 1 achieved the highest scores 7 times, while Prompt 2 ranked the first 5
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Table 2.9: Zero-shot: Score difference between the highest and lowest ones with each LLM
on one dataset and the value in the parenthesis shows the difference percentage.

Model Gerrit GitHub GooglePlay Jira StackOverflow

Macro-F1
Vicuna 0.03 (4.3%) 0.07 (10.8%) 0.24 (32.4%) 0.16 (23.2%) 0.06 (11.3%)

WizardLM 0.01 (1.5%) 0.01 (1.4%) 0.03 (3.8%) 0.05 (6.5%) 0.18 (43.9%)

Llama 2-Chat 0.04 (5.6%) 0.04 (6.3%) 0 0.12 (16.9%) 0.06 (13.3%)

Avg. Diff 3.80% 6.17% 12.07% 15.53% 22.83%

Micro-F1
Vicuna 0.01 (2.1%) 0.06 (12.5%) 0.17 (35.4%) 0.15 (31.3%) 0.04 (8.3%)

WizardLM 0.01 (1.3%) 0.01 (1.4%) 0.03 (3.5%) 0.05 (6.4%) 0.08 (12.3%)

Llama 2-Chat 0.01 (1.2%) 0.04 (6.3%) 0.03 (3.3%) 0.13 (18.3%) 0.11 (18.0%)

Avg. Diff 1.5% 6.7% 14.0% 18.7% 12.9%

times. These results show that Prompt 0 can achieve overall best results considering both

macro-F1 and micro-F1.

Table 2.9 provides an insight into the variance within each result group under the zero-

shot setting. We define a result group as results generated by the same LLM when applied

to the same dataset with varying prompts. This analysis aims to underscore the impact

of prompt selection on performance. Remarkably, within the same group, we observe

disparities as substantial as 43.9%. Expanding our examination to encompass different

models operating on identical datasets reveals an average difference as substantial as

22.83%. This discovery underscores the sensitivity of bLLMs to the choice of prompts in

zero-shot learning.

Answer to RQ1: In the SA4SE context, it is evident that bLLMs exhibit sensitivity to

prompts in zero-shot learning scenarios. When employing various prompt templates,

the average macro-F1 score difference spans from 3.8% to 22.83%, and the average

micro-F1 score difference ranges from 1.5% to 18.7%.
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Table 2.10: Few-shot Performance: Comparative Results of LLMs Across Five Datasets.
Cells highlighted in red indicate the highest scores achieved among the three prompts
executed by each respective model.

Model Shot Gerrit GitHub GooglePlay Jira StackOverflow

1 0.74 0.68 0.74 0.77 0.56
3 0.73 0.72 0.82 0.86 0.65Vicuna
5 0.71 0.72 0.77 0.89 0.64

1 0.76 0.68 0.89 0.78 0.54
3 0.75 0.72 0.87 0.9 0.59WizardLM
5 0.75 0.71 0.82 0.91 0.54

1 0.69 0.54 0.89 0.82 0.42
3 0.69 0.6 0.87 0.84 0.46

Macro-F1

Llama 2-Chat
5 0.68 0.61 1 0.89 0.47

1 0.82 0.69 0.8 0.78 0.78
3 0.81 0.72 0.89 0.87 0.83Vicuna
5 0.78 0.72 0.83 0.89 0.82

1 0.83 0.67 0.94 0.79 0.67
3 0.84 0.72 0.94 0.91 0.74WizardLM
5 0.83 0.7 0.91 0.92 0.74

1 0.78 0.54 0.94 0.83 0.42
3 0.79 0.6 0.94 0.86 0.51

Micro-F1

Llama 2-Chat
5 0.77 0.6 1 0.89 0.59

RQ2: Impact of different shots on the performance of bLLMs with few-shot learning

Table 2.10 showcases the outcomes of few-shot learning utilizing three distinct bLLMs

across five diverse datasets. It is important to reiterate that a result “group” signifies the

results produced by the same LLM when applied to the same dataset with varying shot

numbers.

In summary, when considering macro-F1, the 5-shot configuration emerges as the leader

in seven instances, followed by the 3-shot setup in five cases, and the 1-shot configuration

excels in four instances. Regarding micro-F1, the 5-shot configuration is at the top seven

times, the 3-shot setup prevails nine times, and the 1-shot configuration leads twice.

Generally, the trend for both macro-F1 and micro-F1 indicates that having more than one



CHAPTER 2. SENTIMENT ANALYSIS 43

example is more beneficial than having only one.

Among the three models, Llama 2-Chat consistently benefits from having more examples,

except for the Gerritdataset concerning macro-F1 and micro-F1. In the case of Vicuna and

WizardLM, the impact of additional examples is noticeable primarily on the Jira dataset,

affecting both macro-F1 and micro-F1. This underscores the fact that the influence of

additional examples can vary depending on the LLM and dataset employed. This can

be explained by recognizing that SA, especially the sentiment classification task central

to our work, is relatively straightforward. Consequently, the effects of increasing training

examples might not be as pronounced. Given all the bLLMs benefit from more shots on

the Jira dataset, we investigate the potential reason. One unique characteristic of the

Jira dataset is that it is a binary-class dataset. Despite specifying the available label list

as [‘negative’, ‘positive’] in the prompt templates, bLLMs tend to predict the sentiment as

neutral. We examined the cases where bLLMs predicted the sentiment as neutral:

In the zero-shot setting, Vicuna explicitly predicts the neutral label 4, 19, and 9 times with

Prompt 0, 1, 2, respectively. Similarly, Llama 2-Chat deviated from the template to some

extent but performed better than Vicuna, predicting the neutral label 1, 14, and 5 times.

WizardLM, on the other hand, demonstrated a stronger adherence to the template by

predicting neutral only 1, 0, and 1 times in the same scenarios.

This issue was mitigated when we introduced more shots under the few-shot setting:

In the case of Vicuna, it explicitly predicted neutral 11, 8, and 5 times with 1-shot, 3-

shot, and 5-shot prompt templates, respectively. Like zero-shot learning, WizardLM also

predicted neutral 1, 0, and 1 times. The occurrences of Llama 2-Chat predicting the neutral

label under few-shot learning were comparatively lower. With 1-shot, 3-shot, and 5-shot

prompt templates, the numbers were 4, 4, and 3, respectively. This shows the potential

benefits brought by introducing more shots.
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Figure 2.4: Sensitivity of different prompt designs. Four different prompts give the
performance variance of each dataset. The circles depicted in the figure represent outlier
data points.

Other than benefits brought by more shots, we also notice the decline in macro-F1 with

an increase in the number of examples is apparent, particularly when applying all three

bLLMs to the Gerrit dataset and when using WizardLM on the GooglePlay dataset.

One plausible explanation for this phenomenon is that an increased number of examples

leads to longer prompts, which could potentially confuse the bLLMs. As indicated by

Table 2.7, the documents from the Gerrit dataset have the highest average number of

tokens. Consequently, introducing more examples results in even lengthier prompts. This

observation aligns with prior research on bLLMs in the broader SA domain. [188].

Figure 2.4 provides a clearer illustration of this phenomenon. The box plot delves into

the variance of macro-F1 scores achieved by different prompts for each model on each

dataset. All six prompts examined in their study are considered. This figure reveals that

the influence of different prompts on performance varies depending on both the model and

the dataset. In general, the models demonstrate differing levels of sensitivity to prompts.

Notably, on the Jira dataset, all models exhibit high sensitivity to prompts, signifying

that the choice of prompt has a substantial impact on results. In contrast, on the Gerrit

and GitHub datasets, models appear less responsive to different prompts, suggesting that

the choice of prompt has a relatively smaller effect on their performance.
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Figure 2.5: Comparison of the highest macro-F1 and micro-F1 scores achieved through
zero-shot learning and few-shot learning.

We also compare the best results of any of the three bLLMs under few-shot learning and

those achieved under zero-shot learning. Figure 2.5 illustrates that, in all the five datasets,

the highest macro-F1 score achieved through few-shot learning either surpasses or equals

the highest macro-F1 score attained via zero-shot learning. We can observe a similar

trend in terms of the micro-F1 scores. This trend is particularly pronounced on the Jira

dataset, where bLLMs perform notably better under the few-shot learning paradigm. We

conducted a Wilcoxon signed-rank test on two pairs of comparisons: the best zero-shot

versus few-shot performance in terms of macro-F1 and the best zero-shot versus few-shot

performance in terms of micro-F1. Notably, both comparisons yielded p-values of 0.07.

Hence, it is important to recognize that while few-shot learning does demonstrate superior

results, the margin of improvement is not substantial.

Answer to RQ2: Although the top-performing bLLM achieved equal or higher macro-

and micro-F1 scores in all five datasets with few-shot learning, the difference between

the zero-shot learning was insignificant. In addition, there is no guarantee that the

same bLLM will exhibit improved performance through few-shot learning over zero-

shot learning.
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RQ3: Comparison between fine-tuned sLLMs and bLLMs.

Table 2.11: Results of LLMs compared with fine-tuned SLMs. Cells highlighted in red
indicate the highest scores achieved among the three prompts executed by each respective
model.

Model Gerrit GitHub GooglePlay Jira StackOverflow

Vicuna 0.74 0.72 0.98 0.89 0.65
WizardLM 0.76 0.72 0.89 0.91 0.59

Llama 2-Chat 0.75 0.68 1 0.89 0.51

ALBERT 0.73 0.9 0.56 0.97 0.64
BERT 0.75 0.92 0.49 0.95 0.57

DistilBERT 0.81 0.92 0.57 0.95 0.6
RoBERTa 0.74 0.94 0.42 0.95 0.68

Macro-F1

XLNet 0.77 0.91 0.39 0.94 0.67

Vicuna 0.82 0.72 0.97 0.89 0.83
WizardLM 0.84 0.72 0.94 0.92 0.74

Llama 2-Chat 0.83 0.68 1 0.89 0.72

ALBERT 0.81 0.9 0.8 0.97 0.84
BERT 0.8 0.92 0.71 0.96 0.84

DistilBERT 0.86 0.92 0.83 0.96 0.84
RoBERTa 0.81 0.94 0.63 0.95 0.86

Micro-F1

XLNet 0.83 0.91 0.57 0.95 0.89

Table 2.11 presents a comparative analysis of the top-performing results obtained through

two distinct approaches: prompting bLLMs and fine-tuning sLLMs.

On the GooglePlay dataset, where the fine-tuning data is limited to fewer than 300 data

points and with a negative:neutral:positive ratio of 26:5:37, bLLMs demonstrate a remark-

able performance advantage. The most effective LLM, Vicuna, significantly enhances the

performance of the leading sLLM, DistilBERT, by a substantial improvement of 71.9%. It

indicates that when labeled data is scarce and the training dataset is highly imbalanced,

fine-tuning bLLMs should be the preferred approach over sLLMs.

On the contrary, we have observed that fine-tuning sLLMs produces superior results

on the GitHub and Jira datasets. The GitHub dataset benefits from a larger training
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Figure 2.6: Performance variance of all the models on each dataset.

dataset and a more evenly distributed class structure, making it particularly well-suited

for fine-tuning sLLMs. In contrast, the Jira dataset, though smaller than GitHub, offers

a more favorable class distribution than GooglePlay, with a negative-to-positive ratio of

approximately 1:2.

For the Gerrit and StackOverflow dataset, both bLLMs and sLLMs exhibit relatively

modest performance. The best-performing LLM achieves a macro-F1 score of 0.65, while

the top sLLM achieves a macro-F1 score of 0.68 on the StackOverflow dataset. The

corresponding score is 0.76 and 0.81 on the Gerrit dataset. Both datasets share the

challenge of imbalanced label distribution, which explains the limited success of sLLMs.

Furthermore, for the StackOverflowdataset, given the short length of the sentences in this

dataset, neither bLLMs nor sLLMs may have sufficient contextual information to make

accurate sentiment predictions.

Moreover, in Figure 2.6, we observe the performance of all the models across different

datasets. Notably, on the GooglePlay dataset, there is a significant variance, with bLLMs

standing out by achieving the highest macro-F1 and micro-F1 scores. This underscores

bLLMs’ superiority over sLLMs on this specific dataset.
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On the other hand, for the Gerrit, Jira, and StackOverflow datasets, the variance is

comparatively smaller, suggesting that while sLLMs outperform bLLMs, the margin of

difference is not substantial.

Conversely, in the case of the GitHub dataset, sLLMs demonstrate a substantial advantage

over bLLMs. This discrepancy is likely due to the abundance of training data available

for the GitHub dataset. It reinforces that sLLMs are most effective when ample, balanced

training data is available.

Answer to RQ3: In scenarios with limited labeled data and pronounced class imbal-

ance, prompting bLLMs is a more effective strategy, outperforming fine-tuning sLLMs,

e.g., in the GooglePlay dataset, Llama 2-Chat outperforms the DistilBERT by 75.4%. In

contrast, when ample training data is available and the dataset demonstrates a balanced

distribution, the preference should lean toward sLLMs as the more suitable approach,

e.g., in the GitHub dataset, RoBERTa outperforms Vicuna by 30.6%.

Error Analysis

In this section, we conducted a quantitative and qualitative analysis to understand the

main cause of misclassification made by bLLMs. In the first part, we choose the results

achieved by the best-performing templates for analysis, i.e., for zero-shot learning, we

analyze the results by Prompt 0; for few-shot learning, we analyze the results by 5-shot

prompt.

In Figure 2.7, it is evident that all three bLLMs consistently generate accurate predictions

in a substantial portion of instances. Specifically, in the realm of zero-shot learning, these

models collectively predicted the correct sentiments in 73.7% cases, and in the context of

few-shot learning, they made the correct prediction in 61.4% cases. Notably, both Vicuna

and WizardLM stand out as the bLLMs with the highest degree of overlapping predictions
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(a) Zero-shot learning with Prompt 0 (b) Few-shot learning with 5-shot prompt

Figure 2.7: The Venn diagram of the correct predictions made by bLLMs.

Table 2.12: Overlap in Misclassification Across LLMs in Zero-Shot and Few-Shot Settings.
The Common Column Indicates Misclassifications Shared Between Both Settings.

Misclassified (% of the test set) Test set size
Zero-shot Few-shot Common

Gerrit 15 (13.2%) 10 (8.8%) 8 (7.0%) 114

GitHub 39 (15.6%) 41 (16.4%) 23 (9.2%) 250

GooglePlay 1 (2.9%) 0 0 35

Jira 8 (10.5%) 4 (5.3%) 4 (5.3%) 76

StackOverflow 19 (17.4%) 14 (12.8%) 11 (10.1%) 109

Total 82 (14%) 69 (11.8%) 46 (7.9%) 584

across both scenarios. In the zero-shot context, they share common predictions in an

impressive 83.3% of their respective correct predictions, while in the few-shot scenario,

this shared correct prediction rate remains substantial at 70.1%. Conversely, the lowest

degree of common correct predictions is observed between Vicuna and Llama 2-Chat,

with rates of 80.3% and 69.1% for zero-shot and few-shot scenarios, respectively. These

results underscore the bLLMs’ capacity to achieve comparable success rates in most cases

while also emphasizing their unique strengths.

Now, we shift our focus to the errors made by these bLLMs. Table 2.12 demonstrates
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Table 2.13: Distribution of error categories and their percentage among the whole error
cases.

Error Category # Cases (%)

Polar facts 16 (34.8%)
Subjectivity in annotation 13 (28.3%)
General error 8 (17.4%)
Politeness 5 (10.9%)
Implicit sentiment polarity 4 (8.7%)

again that overall, few-shot learning is more effective than zero-shot learning, as all the

bLLMs misclassified more cases under zero-shot learning. However, we also notice that

the number of common misclassification by both settings is 46, which accounts for 7.9% of

the total test cases. To better understand the difficulties and challenges faced by bLLMs on

the task of SA4SE, we manually examined these cases. In our experiments, all the bLLMs

did not get any correct prediction no matter the setting. We adopt the error categories

provided and used by Novielli et al. [123, 121]. Two authors (from here on, evaluators) first

assigned a category to each document separately, which may not cover all the categories

identified by Novielli et al. Afterward, they discussed and achieved agreement on the

conflicts.

Table 2.13 shows the error categories of these common misclassifications by all the bLLMs.

Polar facts emerge as the most prominent category, representing the majority of failure

cases. In some cases, the sentence describes a fact, which may usually invoke for most

people a positive or negative feeling, i.e. the annotator considered the described situation

either as desirable or undesirable. They have been annotated inconsistently across different

datasets. For example, inGitHub andStackOverflowdatasets, they were labeled as neutral.

However, in Gerrit and Jira datasets, they were labeled as negative. For instance, in the

Jira dataset, There is no need to reference $wizard, it’s an object was labeled as negative. In

the GitHub dataset, Ok, I’ll fix them. was labeled as neutral.
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The second most prevalent category, Subjectivity in annotation, comprises cases where

the evaluators’ interpretation of sentiment differed from the originally assigned label.

As recognized in prior works [102], sentiment or option itself is subjective. Similarly,

sentiment annotation is also a subjective activity. Depending on personality traits or

personal disposition, different annotators’ perceptions of emotions might vary [145]. Thus,

it is not rare that the evaluators have different perceptions from the original annotators.

One instance is from the StackOverflow dataset, Less likely to be blocked by paranoid firewall

configurations.. The evaluators consider this sentence as positive, while the ground-truth

label is negative. Depending on which perspective we think, both make sense: we consider

it positive, as we focus on “less likely to be blocked.” However, the annotators may give

more weight to “paranoid firewall configurations”.

General errors account for 17.4% of cases and occur when the model fails to identify clues

in the document that would be readily apparent to a human. For instance, emoticons can

signal sentiment, as observed in the sentence from the GitHub dataset, “yep, it’s work,

but I need to add user and password for proxy connection=(’.” This sentence may convey

negative sentiment to a human, particularly due to the emoticon “=(” embedded within

it.

Politeness contributes to 10.9% of the error cases, arising when the presence of phrases like

“thanks” or “sorry” leads to inconsistencies across different datasets. For instance, in the

GitHub dataset, the sentence “sorry I did not realize you were already there...” was labeled

as “negative”, although some individuals may perceive it as “neutral”. Similarly, in the

StackOverflow dataset, “Good luck!” was labeled as ‘neutral’, but certain interpretations

could classify it as ‘positive’. These inconsistencies pose challenges for models when

predicting labels with limited examples.

Lastly, Implicit sentiment polarity accounts for 8.7% error cases. When there is a lack of

explicit sentiment clues, it could be hard to decide which sentiment is contained. For
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instance, Yes, it did not cause message loss just unnecessary retransmits., this sentence was

annotated as negative, however, there is no obvious sentiment clue.

In summary, due to the inconsistency in labeling rules and the subjective nature of the

task, challenges arise where bLLMs may struggle to improve significantly. However, in the

case of general errors, there is a potential for improvement as bLLMs continue to advance.

2.2.4 Discussion

Implications for Future Research

Based on the experimental results in our study, we derive the empirical guidelines for

future research on SA4SE and SE in general as follows.

Effective prompt engineering unlocks the full potential of bLLMs. Our experiments

reveal a crucial insight: while prompt templates may appear similar at first glance, deter-

mining which one will yield the highest accuracy requires actual execution and template

refinement. In this context, manual crafting of prompt templates proves exceptionally

advantageous, particularly in zero-shot scenarios. It is through this meticulous process

that we can fully harness the capabilities of bLLMs. In the case of few-shot learning,

dependent on the characteristics of the task, it may not always be helpful to add more

shots. The longer context can confuse bLLMs and lead to worse results.

Select your approach: considering the size and class distribution of the dataset. When

determining the most suitable strategy for a specific task, it is important to consider the

size and class distribution of the dataset. Based on our empirical results, it is crucial to

recognize that, in cases with ample and balanced training data, fine-tuning sLLMs remains

the preferred choice. This guideline is applicable to numerous SE tasks. If there are
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already manually curated datasets available or acquiring labeled data is not a significant

challenge, fine-tuning sLLMs represents a straightforward and effective option. However,

in scenarios where labeled datasets are scarce, bLLMs emerge as a potential solution.

Additional guidelines for rule setting in human-labeled SA datasets or prompt de-

sign. As elaborated in Section 2.2.3, the inconsistency in labeling practices across various

datasets poses a significant challenge for bLLMs to predict labels accurately. To enhance

performance, we propose two potential approaches: 1. Encouraging human annotators to

adhere to general labeling rules when annotating data. 2. Empowering bLLMs to incor-

porate dataset-specific labeling rules. Recall that despite restricting the label options to

“positive” and “negative”, bLLMs still occasionally return “neutral” labels when assessing

the Jira dataset. This observation underscores the importance of further exploring and

refining prompts to match the dataset characteristics.

Threats to Validity

Threats to Internal Validity. In our empirical study, a potential source of bias may arise

from the choice of prompt templates. To mitigate this, we conducted experiments in the

zero-shot setting using three different prompt templates. Additionally, we examined the

influence of the number of shots in the few-shot setting. It is important to note that we

based our prompt templates on prior work [188]. Another concern is the risk of data

leakage. Nevertheless, the dataset we utilized cannot be directly accessed by visiting a

webpage; it requires downloading from a specific URL. Consequently, the likelihood of

data leakage is considered low. A further issue pertains to the quality of the labeled

dataset. We did not generate new datasets but relied on pre-existing ones from other

sources. Consequently, we inherit this quality concern from the original works. However,

as described in Section 2.2.2, in the original labeling process, each dataset was labeled by
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two or more labelers individually and resolved the conflict by involving another labeler.

Thus, we consider the threat to be minimal. Lastly, our decision to categorize non-explicit

responses from bLLMs as neutral poses a potential threat. This decision, aimed at ensuring

consistency in SA, is based on the rationale that “mixed" sentiments typically indicate a

balanced or uncertain position, closely aligning with a neutral stance.

Threats to External Validity. Our findings may not necessarily generalize to data from

other platforms. Nevertheless, we have taken steps to mitigate this threat by considering

data from five distinct platforms. It is important to recognize that our results are specific

to the dataset and experimental setup we employed. In the few-shot learning setting, our

results are contingent on randomly sampled examples. Nevertheless, our experiments

and results still offer valuable insights, demonstrating that bLLMs can be a promising

approach when dealing with a scarcity of annotated data. In the future, we plan to

expand our analysis by incorporating additional datasets from various platforms and

exploring more diverse prompt templates to enhance our understanding of leveraging

bLLMs for SE in SE further.

2.3 Summary

In this work, we first conducted an extensive comparative study on the performance

of prior SA4SE tools and smaller-size large language models (sLLMs). We are the first

to investigate the effectiveness of various sLLMs for the SA4SE task. Our comparative

study includes six datasets: GitHub pull-request and commit comments, API reviews

from Stack Overflow, mobile APP reviews from Google Play, Stack Overflow posts, Jira

issue comments, and code review comments. Our experimental results reveal that the

best-performing fine-tuned sLLM outperforms the best-performing prior SA4SE tool by
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6.5% to 35.6% in terms of the macro- and micro-averaged F1 scores. Overall, sLLM-based

approaches are more ready to be applied in the real world for SA of SE data than the

existing SA4SE tools.

In the follow-up work, we mark the initial step towards comprehending the potential

of utilizing prompting bLLMs in discerning sentiment within SE domain documents.

Our experiments reveal that in cases with limited annotated data, bLLMs outperform

sLLMs, and zero-shot learning is a viable approach. However, when substantial and

well-balanced training data is available, fine-tuning sLLMs is the preferable strategy over

prompting bLLMs.



Chapter 3

Duplicate Bug Report Detection

This chapter presents two studies, in Section 3.1, we conduct a benchmark study and in

Section 3.2, we propose a new approach.

3.1 Benchmarking Study

Despite the many research works and practitioners’ adoption of DBRD, it is unclear which

DBRD technique can recommend the duplicate BR most accurately overall. The most

recent work by Rodrigues et al. [138] shows that SABD [138] outperforms REP [152] and

Siamese Pair [54]. However, their experiments are only limited to a collection of old BRs

from Bugzilla ITSs, in which the latest data used belongs to the year 2008. Concurrent

with the work by Rodrigues et al. [138], Xiao et al. [170] and He et al. [75] have proposed

other DBRD solutions. They have not been compared to each other. Besides, they did not

compare with the tools used in practice. This motivates us to (1) create a benchmark that

addresses the limitations of existing evaluation datasets, (2) compare research tools on the

same dataset, and (3) compare research and industrial tools.

56
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By studying evaluation data used in the literature, we identify three potential limitations:

• Age bias: Firstly, most techniques have not been evaluated on the recent BRs. Previous

research relies heavily on the dataset proposed by Lazar et al. [93]. This dataset contains

BRs from four projects (Eclipse, Mozilla, Netbeans, and OpenOffice) stored in their

respective Bugzilla ITSs. All the BRs in these four projects are reported as early as July

1998 and till January 2014. The effectiveness of DBRD techniques on BRs submitted in

1998 should be significantly different from their effectiveness on recent BRs. Clearly, a

DBRD technique that works well on data from 10 years ago but no longer so on recent

data should not be of much use to developers today. We refer to this potential bias as

age bias.

• State bias: Secondly, as indicated by Xia et al. [169], several fields of a BR may change

during its lifetime, e.g., summary, version, priority, etc. Various reasons can lead to

changes in BR fields, such as when a bug reporter is new to the open-source project, he

might submit a BR where some fields are wrongly assigned. Most studies evaluate the

effectiveness of DBRD techniques based on the latest states of the fields at the point of

data collection. The effectiveness of DBRD techniques should be significantly different

if the initial states of the fields are used. We refer to this potential bias as state bias.

• ITS bias: Lastly, as these techniques are commonly evaluated on BRs from one specific

ITS (i.e., Bugzilla), it is unclear how they perform on other ITSs (e.g., Jira and GitHub).

These ITSs are different in the list of fields that they support, and some DBRD techniques

make use of fields that exist in Bugzilla but not others. A DBRD technique specifically

designed for a certain ITS data should perform differently when applied in another ITS.

We refer to this potential bias as ITS bias.

These biases motivate us to investigate our first research question:

RQ1: How significant are the potential biases on the evaluation of DBRD techniques?
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To answer RQ1, we investigate the performance of the three best-performing solutions

identified by Rodrigues et al. [138] in the presence and absence of each potential bias. We

demonstrate that the age bias and ITS bias matter significantly (𝑝-value<0.01) and substan-

tially (large effect size) for all but one case, while the impact of state bias is insignificant

(𝑝-value>0.05) for all cases.

Based on the above findings, we create a benchmark that addresses age bias and ITS bias

and use it to evaluate DBRD techniques that have been shown competitive performance

in the research literature. Specifically, we conduct a comparative study that evaluates

DBRD techniques on recent BRs (addressing age bias) from different ITSs (addressing ITS

bias). Other than the three techniques mentioned before, we also include two additional

recently-proposed DBRD techniques, DC-CNN [75], and HINDBR [170]. We hereby ask our

second research question:

RQ2: How do state-of-the-art DBRD research tools perform on recent data from diverse ITSs?

Our result shows that, surprisingly, for most projects, the retrieval-based approach, i.e.,

REP [152], proposed a decade ago, can outperform the recently proposed more advanced

and sophisticated models based on deep learning by 22.3% on average in terms of Recall

Rate at Top-10 positions (a.k.a. RR@10). This again demonstrates the value of simpler

approaches in the saga of simple vs. complex [180, 113, 60].

Further, the research tools have been evaluated in isolation, ignoring tools that have been

used in practice. To address this gap, we investigate our third research question:

RQ3: How do the DBRD approaches proposed in research literature compare to those used in

practice?

To answer RQ3, we compare the five research tools considered in RQ2 with two tools

used by practitioners. The first tool is the DBRD technique implemented in the Bugzilla
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ITS, named Full-Text Search (FTS). It has been deployed in practice by Mozilla [40]. The

next tool is the VSCodeBot, which includes a DBRD feature used in Microsoft’s VSCode

repository [6]. The experimental results with FTS show that a straightforward duplicate

search method used in Mozilla can act as a useful baseline as it can outperform the second

best-performing technique on one of the projects in our benchmark by 7.6% in terms of

RR@10. Still, the best-performing research tools can boost FTS performance by 22.1% to

62.7%. Moreover, the experimental results on VSCodeBot show that VSCodeBot is better

than most tools. Still, the two best-performing research tools can outperform VSCodeBot

by 7.6% and 9.8% in terms of RR@5. The results show the value of research on DBRD and

the need to develop these research tools further so that practitioners can use and benefit

from them.

3.1.1 Background

Several DBRD techniques have been proposed in research to detect duplicate BRs auto-

matically. Yet, the industry uses a different set of tools. However, there is a lack of a

systematic study about different approaches for DBRD. Here, we present an overview of

BRs in ITSs, DBRD in practice, and DBRD in research.

Bug Reports in Issue Tracking Systems

Existing research [138, 170] heavily uses data from Bugzilla for comparing DBRD tech-

niques. We observe differences across ITSs in submitting BRs, finding duplicates, and

marking BRs as duplicates. We select the ITSs in the study based on two factors: whether

open-source projects can use them and their popularity. Based on the criteria, we choose

Bugzilla, Jira, and GitHub.



CHAPTER 3. DUPLICATE BUG REPORT DETECTION 60

Table 3.1: Three example bug reports from Eclipse (Bugzilla), Apache (Jira), VSCode
(GitHub) project.

Field Bugzilla Jira GitHub
Bug Id 542516 HIVE-21207 92171
Created 2018-12-07 08:01 EST 04/Feb/19 11:02 7 Mar 2020
Product Platform - -
Component SWT None -
Version 4.8 None -
Priority P3 Major -
Severity major - -
Status CLOSED RESOLVED CLOSED
Resolution DUPLICATE Duplicate -
Summary Unable to uplaod Image

after login
Use 0.12.0 libthrift ver-
sion in Hive

"C# extension recom-
mended for this file type"

Description Starting with Eclipse 4.8,
horizontal scrolling is
...(omitted)

Use 0.12.0 libthrift ver-
sion in Hive.

Issue Type: Bug Recently,
when I open a .cs file.
I get the notification...
(omitted)

Ways to
Record
Duplicate

Field: <dup_-
id>530693</dup_id>

Issue Links: is du-
plicated by Bug HIVE-
21173; HIVE-21000

Infered from the com-
ments below: VSCodeBot
gave a recommendation,
the issue reporter ac-
knowledged

URL: https://bugs.
eclipse.org/bugs/
show_bug.cgi?ctype=
xml&id=542516

https://issues.
apache.org/jira/
browse/HIVE-21207

https://github.com/
microsoft/vscode/
issues/92171

‘-’ : this field is not available in the ITS; ‘None’ : the value of the corresponding field is empty.

Bugzilla is one of the world-leading free ITSs. Several large projects such as Mozilla

and Eclipse use Bugzilla. A typical bug reporting process involves providing necessary

textual and categorical details. A new BR submission in Bugzilla can be seen as a form-

filling activity. To mark a BR as duplicate [57] in Bugzilla, users set the resolution field

to duplicate and insert the bug id that this BR duplicates.

Jira has gained popularity over the last decade. According to the Jira official website [3],

more than 65,000 organizations used Jira in 2021. Jira follows a form-filling design similar

to Bugzilla for creating a new BR. While creating a BR, Jira allows users to relate existing

bugs using labels: is caused by, is duplicated by, or relates to. New duplicates are

https://bugs.eclipse.org/bugs/show_bug.cgi?ctype=xml&id=542516
https://bugs.eclipse.org/bugs/show_bug.cgi?ctype=xml&id=542516
https://bugs.eclipse.org/bugs/show_bug.cgi?ctype=xml&id=542516
https://bugs.eclipse.org/bugs/show_bug.cgi?ctype=xml&id=542516
https://issues.apache.org/jira/browse/HIVE-21207
https://issues.apache.org/jira/browse/HIVE-21207
https://issues.apache.org/jira/browse/HIVE-21207
https://github.com/microsoft/vscode/issues/92171
https://github.com/microsoft/vscode/issues/92171
https://github.com/microsoft/vscode/issues/92171
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manually marked using the resolution field.

GitHub is a popular Git repository hosting service. It provides rich features, one of which

is issue tracking. Issues in GitHub carry a simpler structure when compared to Bugzilla

and Jira. Apart from the textual information, the categorical fields are customizable for

each repository. Repositories on GitHub can use label to categorize issues. However,

these labels are not mandatory or well-defined like Bugzilla and Jira. Hence, BRs logged in

Bugzilla and Jira have relatively more categorical or structured information. This type of

flexibility has pros and cons. On the one hand, it makes it easy to report the issue details; on

the other hand, it makes it difficult to extract useful categorical information systematically.

Some GitHub repositories provide templates to help users embed categorical information

in the textual information. For example, the VSCode project provides a textual template

that asks users to provide categorical information such as VSCode version and os version.

However, the textual template is not compulsory to follow and can be ignored by issue

reporters. The ITS of GitHub uses labels and comments to mark issues as duplicates. We

will describe its duplication marking approach in detail in Section 3.1.2.

BRs from different ITSs carry some common fields (such as BugId, Created Date, etc.) and

also some different ones (such as Severity that exists in BRs from Bugzilla ITS but does

not exist in BRs from Jira and GitHub ITSs). We show one example BR from each of the

three ITSs in Table 3.1. As shown in the table, a Bugzilla BR consists of several fields, the

types of which can either be textual or categorical. For categorical fields: Product usually

represents a software product that is shipped, and Component is a part of a product.

Severity states how severe the problem is, while Priority is used by the bug assignee

to prioritize the issues. Status indicates the current state the bug is in, and Resolution

indicates what happens to this bug. A BR can have several possible statuses, such as

unconfirmed, confirmed, fixed, in process, resolved, etc. The possible resolution

values of a bug can be duplicate, fixed, wontfix, etc. However, Jira does not provide
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Figure 3.1: An example of duplicate issue recommendation when typing “always loading”
before submitting a new bug report on Mozilla Firefox

exactly the same fields. There are no Severity and Product fields in Jira. For GitHub,

there are no categorical fields. The textual data mainly includes a summary, description,

etc. All the ITSs contain these two common textual fields. The Summary is usually a

one-sentence text describing a bug. The Description usually contains more details, such

as the steps to reproduce the bug.

DBRD in Practice

The existence of duplicate BRs causes increasing software maintenance efforts in bug triage

and fixing [91]. Several causes can result in duplicate BRs. Prior work [33] shows that

duplicate BRs can either be submitted intentionally (e.g., usually when the reporters are

frustrated by the same bug not being resolved), or unintentionally (e.g., reporters do not
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Figure 3.2: An example of VSCodeBot duplicate issue recommendation (issue 75817) from
Microsoft/VSCode repository

search for existing BRs or cannot identify duplicates due to the lack of experience). To help

lighten the workload of bug triagers and avoid redundant bug fixing, DBRD techniques

can be useful in two use scenarios. DBRD approaches can either work for (1) pre-submission

scenario: They can be integrated into ITSs to make bug reporters aware of existing similar

BRs and prevent duplicate BRs from happening. Figure 3.1 depicts how the JIT duplicate

recommendation works at the pre-submission for Mozilla ITSs. or (2) post-submission

scenario: They can recommend duplicate lists after duplicate BRs are submitted. For

example, VSCodeBot that is adopted by VSCode GitHub repository can recommend a

list of potential duplicates. Like other bots [65], VSCodeBot also communicates with

developers via issue comments and pull request comments. Figure 3.2 shows an example

of VSCodeBot duplicate issue recommendation on issue 758171. After a user submits the

1https://github.com/microsoft/vscode/issues/75817

https://github.com/microsoft/vscode/issues/75817
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issue, VSCodeBot detects five potential duplicates. The two usage scenarios may require

different technical considerations. For the pre-submission usage scenario, the efficiency

of DBRD tools plays an important role as it requires DBRD tools to produce a real-time

recommendation. Issue reporters are unlikely to be willing to wait for a long time for

a DBRD tool to return some results. On the other hand, for the post-submission usage

scenario, the DBRD tools can potentially be run overnight in a batch mode to process

many BRs, and the emphasis is on optimizing accuracy.

DBRD in Research

Here, we present an overview of the DBRD research tools considered in our work. In

the research literature, many DBRD approaches have been proposed and evaluated. In

our work, we consider five approaches. They include the three best performers in the

study conducted by Rodrigues et al. [138]: SABD [138], REP [152], and Siamese Pair [54].

REP is a popular information retrieval-based DBRD approach. Siamese Pair is the first

deep learning-based DBRD approach proposed in the literature. We further include

HINDBR [170] and DC-CNN [75], which are proposed recently. Since DBRD models mainly

differ in how they conduct feature engineering and how they measure similarity between

BR pairs, we distinguish these two aspects between different methods in Table 3.2. For

detailed explanations of each model, we refer readers to check the original papers. We

describe the five approaches in the following paragraphs respectively.

REP [152] is a retrieval function to rank BRs based on their similarity with an incoming

BR. REP considers 7 features, including 2 textual features, i.e., summary and description

fields, and 5 categorical features, i.e., product, component, type, priority, and versions.

The similarity between the two BRs is a weighted linear combination of the scores of the

7 features. Specifically, REP represents texts with uni-grams and bi-grams and calculates

the textual similarity by computing an extended version of BM25F [137]. Among the five
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Table 3.2: Comparison between different approaches

Approach Type Feature Engineering Distance MeasurementEmbedding Modeling

REP [152] Categorical - handcrafted linear combinationTextual - 𝐵𝑀25𝐹𝑒𝑥𝑡
Siamese Categorical customized single-layer Cosine Similarity
Pair [54] Textual GloVe bi-LSTM + CNN

SABD [138] Categorical customized ReLU fully-connected layer
Textual GloVe bi-LSTM + attention fully-connected layer

HINDBR [170] Categorical HIN2vec MLP Manhattan DistanceTextual Word2vec RNN

DC-CNN [75] Categorical Word2vec dual-channel CNN Cosine SimilarityTextual

categorical features, if the values of the product, component and type fields of the two

BRs are the same, the corresponding feature is 1; otherwise, the feature value is 0. For the

remaining two features, i.e., priority and version, the corresponding feature is represented

by the inverse of the distance between the values of priority and version of the two BRs.

REP has a total of 19 parameters to be tuned, such as the weights of features used. REP

proposes to learn these parameters for the bug repositories under consideration using

stochastic gradient descent by analyzing a training dataset of historical BRs. The training

set of REP is a set of triples (𝑞, 𝑟𝑒 𝑙, 𝑖𝑟𝑟), where 𝑞 is the query bug, 𝑟𝑒𝑙 is a duplicate bug

with 𝑞, and 𝑖𝑟𝑟 is a non-duplicate bug with 𝑞.

Siamese Pair [54] is a deep learning architecture combining Siamese LSTM and CNN for

DBRD. Siamese Pair first encodes different types of features separately. Specifically, for

textual fields, the summary is encoded by a bidirectional LSTM, and a CNN encodes the

description. The categorical fields, such as product, priority, and component, are encoded

by a feed-forward neural network. In the end, the outputs from the three encoders would

be concatenated to represent a BR. The proposed model uses Siamese neural networks

and is trained with a max-margin objective. In the evaluation stage, BRs in the test dataset

are sorted based on the Cosine similarity with the encoding of the query BR.
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Soft Alignment Model for Bug Deduplication (SABD) [138] receives a pair of BRs, a query

BR, and a candidate BR. SABD is composed of two sub-networks: one for categorical

information and the other for textual information. Each sub-network represents one

type of information separately and uses a comparison layer to produce a comparative

representation of the two BR vectors either in terms of the values of their categorical or

textual fields, respectively. The categorical sub-network is a straightforward dense neural

network, while the textual sub-network adopts a sophisticated architecture, where the

core is the soft alignment comparison layer. The outputs of the two sub-networks are

concatenated. A classifier layer receives the concatenated output and produces the final

predicted probability regarding whether the candidate BR is the duplicate of the query

BR. The soft-attention alignment exchanges the information between BRs before encoding

the textual fields into a fixed-size vector.

HINDBR [170] represents BRs as a Heterogeneous Information Network (HIN). The BRs

are connected through their categorical fields. For example, two BRs with bug id x and

y that have the same priority, say Pri_High, are connected as x – Pri_High – y in the HIN.

Manhattan distance on the HIN2Vec [59] embedding is used to find semantic similarity

in BRs. Xiao et al. introduced three variations of HINDBR: (1) only use unstructured

features (i.e., text), (2) only use structured features (i.e., categorical information), and (3)

use both. In this study, we found that the models only use unstructured features show

better performance than both, thus, we adopted the variant with only text.

Dual-Channel Convolutional Neural Networks (DC-CNN) [75] represents a BR pair with

dual-channel matrices. DC-CNN extracts the values of four fields in a BR, i.e., product,

component, summary, and description, and treats them as text. After the pre-processing,

including tokenization, stemming, and stop word removal, a word2vec [97, 141] model

is learned to capture semantic information in the BRs. DC-CNN converts each BR from text

to a single-channel matrix based on the word representations learned by the word2vec
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model. To represent a BR pair, it combines two single-channel BR representation matrices

into dual-channel matrices. The BR pair representations are then fed into a CNN model

to capture the correlated semantic relationships between BR pairs. The output of the last

layer of the model is used as the predicted similarity score between two BRs.

REP, SABD, and Siamese Pair were evaluated using a ranking setting: given a new BR,

rank the potential duplicate BRs. HINDBR and DC-CNN were evaluated using a classification

setting: given a pair of BRs, decide whether they are duplicates. Rodrigues et al. [138] claim

that this classification setting is quite unrealistic since the real scenario presents a much

larger set of negative candidates. Furthermore, when a new BR is submitted, all previously

submitted reports are duplicate candidates. Thus, they believe the classification-setting

highly overestimated performance. Following them and considering how DBRD is used in

practice (c.f. Section 3.1.1), we evaluate all these approaches using the ranking setting.

3.1.2 Data Collection Methodology

Different ITSs represent BRs in different ways, and it is essential to prepare a unified data

format to represent the BRs extracted from all of these ITSs. We present our methodology

to build the BR dataset from three different ITSs. The methodology involves five main

steps: (1) crawling BRs from the website, (2) filtering out open/unresolved BRs, (3)

extracting duplicate BR relations, (4) extracting both textual and categorical information,

and (5) cleaning and generating duplicate pairs. We elaborate on these steps in the

following subsections.
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Data Source Selection and Crawling

Project Selection. From each of the three ITSs, we have selected two projects. Here, we

describe the projects selected and the rationale behind the selection.

Bugzilla: We choose Eclipse [39] and Mozilla [40] for Bugzilla, which have the two

largest number of issues in the dataset of Lazar et al. [93]. Eclipse is an Integrated

Development Environment (IDE), and its Bugzilla contains several products, including

C Development Tools, Eclipse Modeling Framework, and so on. Similarly, the Mozilla

software foundation also includes several projects, including the popular Firefox web

browser.

Jira: Following Xie et al. [171], we select two Apache projects hosted on Jira2, i.e., Hadoop [2]

and Spark [5]. Hadoop provides a big data framework for distributed data storage and

processing. There are several projects that have been categorized as Hadoop in Jira.3 In this

work, we include Hadoop Common, Hadoop HDFS, Hadoop MapReduce, Hadoop YARN, HBase,

Hive, and Hadoop Development Tools projects. We collectively call them as Hadoop.

Spark is an analytics engine for large-scale data processing.

GitHub: From the datasets listed at GHtorrent [66], we choose the repositories having

the largest number of issues. We use the latest update of this GHtorrent dataset dated

March 6, 2021. Then we manually confirm whether each repository is still in active

use. After excluding test or unavailable repositories, we got the five repositories that

contained the largest number of issues. They are: nixos/nixpkgs, microsoft/vscode,

elastic/kibana, kubernetes/kubernetes, and ansible/ansible. Among these five

2Although Jira is a proprietary bug tracking and project management software, it is free for open-source

projects (e.g., the Apache Software Foundation projects) that meet certain criteria [27].

3https://issues.apache.org/jira/secure/BrowseProjects.jspa?selectedCategory=10292

https://issues.apache.org/jira/secure/BrowseProjects.jspa?selectedCategory=10292
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repositories, VSCode [6] and Kibana [4] contained the largest number of duplicate issues

in 2018 – 2020, so we included these two projects in our dataset. Visual Studio Code

(VSCode) is a popular multi-platform source-code editor provided by Microsoft. Kibana

is a proprietary data visualization dashboard software for Elasticsearch, which is a search

engine based on Lucene.

Time Range Selection. We select two different time periods (i.e., old and recent) to

investigate whether the age of data impacts the performance of DBRD techniques. For old

data, we choose January 1, 2012 to December 31, 2014. For recent data, we include the recent

three-year data from January 1, 2018 to December 31, 2020. The DBRD feature described

in Section 3.1.1 was introduced to Bugzilla in 2011. Moreover, the feature adoption date

for the projects is unclear. As we would like to focus on analyzing the impact of age bias

(rather than the impact of DBRD feature introduction), we intentionally picked the time

range after this feature was introduced to Bugzilla. Intuitively, if a significant age bias

exists considering a 6-year gap period, the bias would have been more pronounced if a

longer gap period is considered.

Crawling. For both Bugzilla and Jira, we used the XML export API of the ITSs. For

GitHub issues, we used GraphQL API [1] for retrieving the issues in JSON format. Both

XML export API and GraphQL API are publicly available. We crawl the issues in June

2021, which is six months later than the aforementioned recent data, to minimize the

number of open or unresolved issues.

Filtering Out Open/Unresolved BRs

Following Lazar et al. [93], we only keep closed or resolved BRs among all the crawled BRs.

A typical life cycle of a bug can be abstracted into six main steps [166]: unconfirmed,
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new, in progress, resolved, verified, and closed. Note that a resolved or closed bug

can be reopened in the future. Even so, the detailed life cycle in different ITSs may be

different. Based on the definition of open bugs by Mozilla 4, we consider a BR as closed if

(1) its status is either resolved or verified; or (2) its resolution is one of the seven types:

fixed, invalid, wontfix, moved, duplicate, worksforme, and incomplete. For Eclipse,

we add another possible status CLOSED as closed bugs based on the Eclipse Wiki 5. For

Jira projects, a closed bug has much more possible resolution types than Bugzilla. Thus,

we regard a BR as closed if its status is marked as either resolved or closed. For GitHub

projects, as it only has state field, other than resolution and status. We consider an issue

as closed, if its state is closed.

Identifying Duplicate BRs

The process to identify whether a BR is a duplicate one is referred to as duplicate detection.

We use the following strategies to extract ground truths:

Bugzilla: The XML format of each issue in Bugzilla has a field called dup_id, which

contains a reference to a bug that the current bug is a duplicate of. The dup_id can either

be empty or contains another bug’s bug_id. If it is not empty, the current bug is a duplicate

of the bug in dup_id. Therefore, we directly extract the dup_id of those bugs that have a

resolution of DUPLICATE to gather the duplicate relation.

Jira: Jira does not provide the dup_id like Bugzilla does. However, Jira provides rich types

of issue dependency links, e.g., duplicates, is duplicated by, contains, to represent

the relationship between issues. We identify the duplicate relations by analyzing the

duplicates, and is duplicated by links.

4https://wiki.mozilla.org/BMO/UserGuide/BugStatuses

5https://wiki.eclipse.org/Bug_Reporting_FAQ#What_is_the_life_cycle_of_a_bug_report.3F

https://wiki.mozilla.org/BMO/UserGuide/BugStatuses
https://wiki.eclipse.org/Bug_Reporting_FAQ#What_is_the_life_cycle_of_a_bug_report.3F
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Table 3.3: Textual and categorical fields that are leveraged by the approaches

Fields REP [152] Siamese-Pair [54] SABD [138] HINDBR [170] DC-CNN [75]

Textual summary ✓ ✓ ✓ ✓ ✓
description ✓ ✓ ✓ ✓ ✓

Categorical

product ✓ ✓ ✓ ✓ ✓
component ✓ ✓ ✓ ✓ ✓
priority ✓ ✓ ✓ ✓
severity ✓ ✓ ✓
type ✓
version ✓ ✓

GitHub: Other than the prior two ITSs, the issues in GitHub have a more flexible format.

GitHub supports marking duplicates with a comment [64] of the format “Duplicate of

#ISSUE_NUMBER”. Such comment format can be used to mark the issue that is a duplicate

of another issue. As it is not mandatory, we found that not all issue reporters strictly follow

this comment format pattern, some users use short-hand notations to mark duplicates,

for example, dup with #ISSUE_NUMBER. In the end, we use a regular expression that

can check the variations of duplicate comments to detect duplicate issues. To validate

the reliability of our regular expressions, we manually investigated the duplicate issues

detected by the regular expression. We randomly sampled 384 duplicate issue pairs based

on the regular expressions from Kibana and VSCode, respectively. Then, two authors

(i.e., investigators) evaluated independently whether the extracted duplicate issues are

real duplicates. If there is a disagreement between the investigators, they discuss their

investigation results until they reach an agreement. We found only 3 and 21 cases were

wrong (i.e., the extracted issues based on the regular expression are not real duplicates)

for Kibana and VSCode, respectively. Thus, our regular expression can detect duplicate

issues with at least 94.5% of accuracy. Note we do not check false negatives. As for projects

that use Bugzilla and Jira as ITS, false negatives are also possible since people may not

mark the duplicates as such.
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Information Extraction

All the selected DBRD approaches have taken advantage of both textual and categorical

information to improve their effectiveness. Table 3.3 shows the fields that each approach

can utilize. The three ITSs have different fields to record categorical information. We

extract all the essential fields needed by the approaches, i.e., bug id, categorical fields:

product, component, severity, priority, version, status, resolution; textual informa-

tion: summary, description. We describe how we extract such information from different

ITSs.

Bugzilla: A BR on Bugzilla that is exported as an XML file contains clear and well-defined

field names. Around 20 fields are given in the XML file, however, not all of them are

needed for DBRD. We thus parsed the XML file and saved the essential fields.

Jira: Similar to Bugzilla, Jira has several pre-defined fields for bug reporters to fill in,

e.g., component, priority, version. However, Bugzilla and Jira do not have identical

categories. For instance, Jira only has a priority field to indicate the importance of an

issue, while Bugzilla has severity and priority. Different from Bugzilla, BRs on Jira do

not have the product and severity fields. If any field value is missing, we leave it as an

empty string.

GitHub: As mentioned before, GitHub does not provide any well-defined fields for

categorical information. Even though labels may provide categorical information, labels

are highly customizable for each project. In addition, labels are shared by the other features

(e.g., pull requests and discussion) of GitHub6, so it does not represent categories for issues

only. Due to the above limitations, we only extracted textual information from GitHub

6https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/

managing-labels

https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels
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issues. We leave it as future work to investigate how to derive categorical information

from GitHub issues.

Data Cleaning

Handling duplicates. It is not rare that one BR has more than one duplicate BRs. For

example, the bug 92250 has 45 duplicates7. A group or bucket refers to a set of BRs which

are duplicates to each other. The master BR is the one to which the rest reports refer.

Similar to the prior work [152, 138], we also make the first submitted BR as the master and

the rest in the bucket as duplicates. As we do not cover all the BRs in each ITS and only

use the time range of three years, the master BRs of some duplicate BRs can be out of our

considered time range (i.e., before January 1, 2012, or January 1, 2018). In that case, we

choose the oldest BR in the bucket within the time range as a new master. By this cleaning

step, the number of duplicates in our dataset has been smaller than the number of BRs

that have been resolved as duplicates.

Basic pre-processing. We conducted data pre-processing in the textual part (summary and

description) of a BR: (1) removing punctuations, (2) lower-casing, (3) removing numbers,

(4) removing stop words, (5) stemming, and (6) removing single characters. We then

tokenized the processed text with white spaces. We reused the script in the replication

package provided by Rodrigues et al. [138].

Train-test split. We first sort all the BRs chronologically. Then, we select three years of

data. The first two years of data is used for training (including validation, if applicable),

while the last year of data is used for testing. Except REP, all the other approaches need

validation data. SABD and Siamese Pair use the last 5% data in training data as validation

data, while HINDBR and DC-CNN use 20% and 10% of the training pairs as validation pairs,

7https://bugs.eclipse.org/bugs/duplicates.cgi

https://bugs.eclipse.org/bugs/duplicates.cgi
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Table 3.4: Statistics of data in the six projects

ITS Project # BRs # Dup BRs (%) # Unique Per bucket
Master BRs Avg. BRs Max. BRs

Bugzilla Eclipse 27,583 1,447 (5.2%) 959 2.5 19
Mozilla 193,587 20,189 (10.4%) 10,702 2.9 151

Jira Hadoop 14,016 377 (2.7%) 336 2.1 6
Spark 9,579 354 (3.7%) 290 2.2 14

GitHub Kibana 17,016 470 (2.8%) 388 2.2 9
VSCode 62,092 4386 (7%) 2,342 2.9 51

Avg. BRs: average number of BRs in a bucket; Max. BRs: max number of BRs in a bucket

respectively.

One-year time window. For each duplicate BR in the test data, its candidate duplicates

are the BRs submitted within one year. We call it one-year time window search range.

Rodrigues et al. found that despite some minor differences, the findings using a one-year

time window are similar to the ones with a longer frame of three years. Thus, we decided

to use a one-year time window in our experiments.

Pairs generation. Generating duplicate and non-duplicate pairs is an important imple-

mentation detail integrated into each approach. By design, different approaches utilize

different ratios of non-duplicate and duplicate pairs. And we follow the original imple-

mentation of each approach. Specifically, REP generates 30 times more non-duplicate pairs

than duplicate pairs. Siamese Pair and SABD generate the same number of non-duplicate

pairs as duplicate pairs. HINDBR and DC-CNN generate four times more non-duplicate pairs

than duplicate pairs. However, the duplicate pairs in the training data are the same, i.e.,

pair two BRs in the same bucket. We report the number of duplicate pairs in training data

in Table 3.4. Note that we would only pair those BRs in the training set.

Overall, we present the basic statistics of the six projects in Table 3.4. We can find that

different projects have different characteristics: in one bucket, Mozilla can have 151 BRs

that are duplicates of each other, while for Hadoop, the maximum BRs in one bucket is
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only 6. The ranking of the total number of BRs in each ITS is Jira < GitHub < Bugzilla. On

average, the percentage of duplicate BRs is also Jira < GitHub < Bugzilla.

3.1.3 Study Setup

We design experiments to answer the RQs described earlier. For RQ1, we focus on

understanding the biases that may affect the performance of DBRD techniques. For RQ2,

we conduct a comparison among the existing DBRD techniques on our new benchmark.

RQ3 focuses on the DBRD techniques in practice.

RQ1: To answer RQ1, we evaluate the three best-performing DBRD techniques reported in

a recent study by Rodrigues et al. [138]: REP [152], Siamese Pair [54], and SABD [138]. For

the age bias (old vs. recent data) and state bias (initial vs. latest state), we run experiments

on the BRs from Bugzilla. For the ITS bias, we run experiments on the BRs from Bugzilla,

Jira and GitHub (Bugzilla vs. Jira, and Bugzilla vs. GitHub). To analyze the impact of

age bias and state bias, we pick two popular projects (Mozilla and Eclipse) which use

Bugzilla as their ITS as a starting point. We conduct controlled experiments [32, 62] by

varying one variable (i.e., age and state) at a time. Furthermore, We choose Mozilla and

Eclipse projects due to the long history associated with them in terms of both the number

of BRs and the number of duplicates.

To investigate the impact of age bias, we evaluate the effectiveness of the three DBRD

techniques on BRs from two time windows: old (2012–2014) vs. recent (2018–2020).

Table 3.5 shows the data statistics of these two time windows.

To investigate the impact of state bias, we use Mozilla and Eclipse BRs that were sub-

mitted in 2018–2020. For these BRs, we compare the effectiveness of the three DBRD

techniques using the latest and initial states of their fields. Among the fields we extracted
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Table 3.5: Statistics of old (2012–2014) and recent (2018–2020) data for RQ1

Project Age Train Test Total
# BRs (% Dup) # Dup Pairs # BRs (% Dup) # BRs (% Dup) # Master BRs

Mozilla
Old 198,653 (9.9%) 35,474 139,502 (9.9%) 338,155 (9.9%) 21,554
Recent 137,886 (10.1%) 60,498 55,701 (11.2%) 193,587 (10.4%) 10,702

Eclipse
Old 49,355 (5.5%) 4,482 25,021 (12.1%) 74,376 (7.7%) 3,254
Recent 19,607 (4.7%) 1,725 7,976 (6.5%) 27,583 (5.2%) 959

Table 3.6: The percentage of BRs changed the corresponding state in 2018–2020

Platform Summary Description Product Component Priority Severity Version
Eclipse 10.8% - 7.8% 11.7% 1.2% 5.6% 8.6%
Mozilla 11.8% - 21.4% 24.5% 24.5% 5.4% 4.2%

for experiments, only the description cannot be changed [160], thus we try to recover all the

other fields if changed. We recover the initial state of these fields by tracing BR’s change

history8. Each item in the change history of a BR describes the author, time, updated field,

removed value, and added value. Table 3.6 shows the percentage of BRs which changed

their initial states.

To investigate the impact of ITS bias, we evaluate the three DBRD techniques on BRs

(reported in 2018–2020) for three sets of projects that use Bugzilla (Eclipse and Mozilla),

Jira (Spark and Hadoop) and GitHub (Kibana and VSCode) as ITS.

RQ2: To answer RQ2, other than the three techniques evaluated for answering RQ1, we

add two more recent techniques, DC-CNN [75] and HINDBR [170]. These two approaches are

initially designed and also evaluated as a classification task. In our experimental setting,

all the BRs submitted within a one-year time window are duplicate BRs candidates. For

each BR 𝑏𝑟𝑖 , 𝑖 = 1, ..., 𝑚, where 𝑚 is the total number of BRs in the test set. We pair

it with all its candidate BRs, i.e., (𝑏𝑟𝑖 , 𝑏𝑟𝑖 ,1), (𝑏𝑟𝑖 , 𝑏𝑟𝑖 ,2)...(𝑏𝑟𝑖 , 𝑏𝑟𝑖 ,𝑘), where 𝑘 is the total

number of candidate BRs of 𝑏𝑟𝑖 , 𝑏𝑟𝑖 , 𝑗 , 𝑗 = 1, ..., 𝑘 is a candidate duplicate of 𝑏𝑟𝑖 . The

trained classification model is used to predict whether each pair is duplicate. The output

8An example of change history of a BR: https://bugzilla.mozilla.org/show_activity.cgi?id=

122876

https://bugzilla.mozilla.org/show_activity.cgi?id=122876
https://bugzilla.mozilla.org/show_activity.cgi?id=122876
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Table 3.7: The number of issues per duplicate recommendation frequency by VSCodeBot

# predictions 1 2 3 4 5 Total
# issues 5,016 2,006 1,158 730 2,898 11,808

probability value is then used to rank the possibility that each candidate BR be a duplicate

one. If two candidate BRs have the same probability value, we rank them based on their BR

ids in ascending order. We get the top-𝑘 recommendations and evaluate the performance

based on the recommendations. We evaluate the five techniques on a new benchmark

dataset unaffected by the biases that are found to have a significant and substantial impact

on DBRD evaluation in RQ1.

RQ3: To answer RQ3, we investigate the effectiveness of the DBRD techniques used in

practice by Mozilla and VSCode projects, and compare them with the aforementioned five

DBRD techniques.

Mozilla uses Bugzilla as its ITS, and Bugzilla implements several variants of a DBRD

technique named Full-Text Search (FTS)9. We study the source code of Bugzilla to identify

how FTSworks. Simply put, based on the summary input, FTS relies on a BR database and

issues SQL queries to search in the database. There are two variants of FTS: FULLTEXT_OR

and FULLTEXT_AND. For the first variant, the SQL queries specify ‘OR’ operations in full-

text search; otherwise, the SQL queries specify an exact match. We inferred the variant of

the FTS search used by Mozilla (i.e., the OR variant) by trying to enter new BRs into its

FTS. We replicated the OR-variant by using the same SQL queries that Bugzilla uses on

reading the entire summary field.

Another DBRD technique used in practice is VSCodeBot [7], but its implementation is not

publicly available, and it only works for the VSCode repository. Thus, we only evaluate the

9https://github.com/bugzilla/bugzilla/blob/5.2/Bugzilla/Bug.pm and https://github.com/

bugzilla/bugzilla/blob/5.2/Bugzilla/DB.pm

https://github.com/bugzilla/bugzilla/blob/5.2/Bugzilla/Bug.pm
https://github.com/bugzilla/bugzilla/blob/5.2/Bugzilla/DB.pm
https://github.com/bugzilla/bugzilla/blob/5.2/Bugzilla/DB.pm


CHAPTER 3. DUPLICATE BUG REPORT DETECTION 78

five techniques on the test data from the VSCode project. Table 3.7 presents the number

of VSCode issues that have potential duplicate recommendations by VSCodeBot made in

2018-2020. Among the 62,092 VSCodeBRs in our dataset, 11,808 BRs got potential duplicate

recommendations. VSCodeBot only recommends up to five recommendations for an issue.

Evaluation Metrics

We evaluate the effectiveness of DBRD tools by calculating Recall Rate@𝑘 (RR@𝑘). The

evaluation strategy is consistent with the previous works for the DBRD task [54, 142, 165,

153, 25], i.e., only RR@𝑘 is used. Note that another metric that has been used in a few

DBRD research papers [152, 138] is Mean Average Precision (MAP). MAP concerns the

position of the ground truth master BR in each prediction. A higher MAP means that

for each BR in the test set, the model can return the ground truth master at a higher

place in the ranked result list. The primary reason that prior works, as well as our work,

do not consider MAP is that it does not simulate the real usage scenario: In real use, it

is unlikely developers would frequently check the recommendations after 10 BRs. For

example, prior work on understanding practitioners’ expectations on automated fault

localization [90] has shown that nearly all the respondents (close to 98%) are unwilling

to inspect more than ten program elements to find the faulty code. Another supporting

evidence is for VSCodeBot [7] used in the Microsoft Visual Studio Code repository, the

largest number of duplicate issue recommendations is 5.

RR@𝑘 is defined as follows:

𝑅𝑅@𝑘 =
𝑛𝑘

𝑚
,

where 𝑛𝑘 is the number of duplicate BRs in the test set whose bucket has been found in

the top-𝑘 positions; 𝑚 is the total number of duplicate BRs in the test set.
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Figure 3.3: Examples of the predictions in the top-10 positions for 4 test BRs.

For example, in Figure 3.3, consider a project with four BRs in the test set. We show

the top-10 predictions for the four test BRs. If the corresponding prediction is correct,

the box is highlighted in red. In this example, for the test BR1, BR2, BR3, the successful

prediction is in the 2nd, 4th, and 8th predictions, respectively. For the test BR4, all the

top-10 predictions are wrong. The RR@𝑘 in this dataset would be: RR@𝑘(𝑘 = 1) = 0,

RR@𝑘(𝑘 = 2, 3)=1/4=0.25, RR@𝑘(𝑘 = 4, 5, 6, 7)=2/4=0.5, and RR@𝑘(𝑘 = 8, 9, 10)=3/4=0.75.

The process of finding a duplicate BR’s master BR is essentially equivalent to finding the

bucket to which it belongs. In the prediction stage, for each BR in the test dataset, a

DBRD technique queries its candidate BRs and returns a possible duplicate BR list. In the

evaluation stage, we group the BRs in the list returned by a DBRD technique into buckets

list to calculate the recall rate of the predictions. This evaluation strategy is consistent

with Rodrigues et al. [138].

In this paragraph, we elaborate on how 𝑛𝑘 in RR@𝑘 is calculated on the example in

Figure 3.3. There are four BRs in the test set. To find the BRs duplicates of a test BR

(i.e., the bucket they belong to), instead of only calculating the similarity score of the test

BR with master BRs, we compare the test BR with all the BRs in buckets. Like the prior

works [152, 138], we also use the highest score among the test BR with all the BRs in the

candidate bucket as the similarity score between the BR with the candidate bucket. We

illustrate a concrete example as shown in Figure 3.4. We have 100 BRs: { BR-1, BR-2, BR-3,

..., BR-100} and they belong to 20 buckets BR-1 : { BR-1, BR-3, test BR1}, BR-2 : { BR-2,
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Bucketstest BR1

Returns

Similarity (BR)
BR-3: 0.98
BR-4: 0.87
BR-1: 0.76
BR-2: 0.52
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BR-4
BR-5

Similarity (Bucket)
BR-2
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...
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BR-100
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BR-1 BR-1, BR-3, test BR1

BR-2, BR-4, BR-5, ..., 

BR-100

...

BR-20, BR-48, BR-55, ...,
BR-99BR-20

...
BR-20

Figure 3.4: The workflow of retrieving the correct bucket.

BR-4, BR-5, ..., BR-100}, BR-3: { BR-3,...}, ... BR-20: {BR-20, BR-48, BR-55, ..., BR-99}. We

represent a bucket as a dictionary: the key is the master BR, and the value is its duplicate

BRs and itself. Thus, we use the master BR id to refer to the bucket. Given 𝑡𝑒𝑠𝑡𝐵𝑅1,

each model will return a list of BRs sorted by the likelihood of being a duplicate of test

BR1. The returned rank list is: [(BR-3, 0.98), (BR-4, 0.87), (BR-1, 0.76), (BR-2, 0.52), (BR-5,

0.22), ... (BR-100, 0.001)]. The first part of each tuple is the BR id, and the second part is

the similarity score. According to the ground truth information, test BR1 belongs to the

bucket BR-1: { BR-1, BR-3, test BR1}. As test BR1 is in the same bucket as BR-1 and BR-3,

the highest similarity scores, i.e., (BR-3, 0.98), will be the similarity score between test BR1

with the bucket BR-1 : { BR-1, BR-3, test BR1}. So, in this example, this model makes a

successful prediction at the second position, and we can get 𝑛𝑘 = 1(𝑘 = 2). With the same

strategy, we can calculate the 𝑛𝑘 in the rest of the three BRs and get RR@𝑘(𝑘 = 2)=1/4=0.25.
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3.1.4 Study Results

RQ1. How significant are the potential biases on DBRD techniques?

Due to the page constraint, we only present the statistical test results in Table 3.8. The

detailed results are available in our online appendix.10

Age Bias: We run the Mann-Whitney U test [63] on the following null hypothesis for each

pair of DBRD approach and project:

𝐻0.1: There is no significant difference in RR@𝑘 on old issues and recent issues.

We also compute Cliff’s delta (d) effect size [139]. As we have six 𝑝-values on the same

hypothesis, we also run Bonferroni correction [167], and the significance level 𝛼 becomes

0.0083. We find that the 𝑝-value is < 0.0083 for all approach-project pairs except one case

(and thus we can reject the null hypothesis) and the effect size is large. We contend that

the age of data significantly affects DBRD performance.

State Bias: Similar to the prior bias, we run the Mann-Whitney U test on the following

null hypothesis for each pair of the DBRD approach and project:

𝐻0.2: There is no significant difference in RR@𝑘 on the initial state and recent state within

an issue.

We also compute Cliff’s delta effect size. With Bonferroni correction, the significance level

𝛼 is 0.0083. We find that the 𝑝-value is > 0.0083 for all approaches on projects with the

initial and latest state (and thus we cannot reject the null hypothesis). We contend that

the state does not make a significant difference in DBRD performance.

10https://github.com/soarsmu/TOSEM-DBRD

https://github.com/soarsmu/TOSEM-DBRD
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Table 3.8: Mann-Whitney-U with Cliff’s Delta Effect Size |𝑑 | on RQ1

Bias Approach Data 𝑝-value |𝑑 |

Age

REP
Eclipse 0.003 0.78 (large)
Mozilla 0.005 0.72 (large)

Siamese Pair
Eclipse < 0.001 1 (large)
Mozilla 0.003 0.76 (large)

SABD
Eclipse 0.001 0.82 (large)
Mozilla 0.012 0.66 (large)

State

REP
Eclipse 0.105 0.44 (medium)
Mozilla 0.190 0.36 (medium)

Siamese Pair
Eclipse 0.063 0.5 (large)
Mozilla 0.190 0.36 (medium)

SABD
Eclipse 0.315 0.28 (small)
Mozilla 0.315 0.28 (small)

ITS

REP
Jira 0.056 0.36 (medium)
GitHub < 0.001 0.66 (large)

Siamese Pair
Jira < 0.001 1 (large)
GitHub < 0.001 0.97 (large)

SABD
Jira < 0.001 0.97 (large)
GitHub < 0.001 0.77 (large)

ITS Bias: we also run the Mann-Whitney U test on the following null hypothesis for each

approach on Bugzilla vs. Jira, and Bugzilla vs. GitHub data:

𝐻0.3: There is no significant difference in RR@𝑘 on Bugzilla issues and other ITS issues.

We also compute Cliff’s delta effect size. We find that the 𝑝-value is < 0.0083 (with

Bonferroni correction) for all approaches and the effect size is large (except for one case),

and thus we can reject the null hypothesis. Thus, we contend that ITS plays an important

role in DBRD technique performance.

Answer 1: Age bias has a statistically significant impact (with large effect size) on the

evaluation of DBRD techniques in all but one cases. State bias does not have a statistically

significant impact. ITS bias has a statistically significant impact (with large effect size) on all

but one case.
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Table 3.9: Statistics of training and testing data

ITS Project Train Test Total
# BRs (% Dup) # Dup Pairs # BRs (% Dup) # BRs (% Dup)

Bugzilla Eclipse 19,607 (4.7%) 1,725 7,976 (6.5%) 27,583 (5.2%)
Mozilla 137,886 (10.1%) 35,474 55,701 (11.2%) 193,587 (10.4%)

Jira Hadoop 10,276 (2.8%) 328 3,740 (2.5%) 14,016 (2.7%)
Spark 6,738 (4%) 414 2,841 (3%) 9,579 (3.7%)

GitHub Kibana 9,849 (2.9%) 376 7,167 (2.6%) 17,016 (2.8%)
VSCode 40,801 (7.2%) 9,008 21,291 (6.8%) 62,092 (7%)

RQ2. How do the state-of-the-art DBRD research tools perform on recent data?

Based on the findings from RQ1, we evaluate the existing DBRD techniques on a new

benchmark that omits age bias and ITS bias. Our benchmark contains the recent three-year

BRs extracted from Bugzilla, Jira, and GitHub. We build this dataset as described in

Section 3.1.2. Table 3.9 shows the statistics of the training and testing data. Figure 3.5

shows RR@𝑘 from the 5 approaches on our dataset. The x-axis denotes 𝑘 values from 1

to 10 while the y-axis shows RR@𝑘. Each approach is highlighted with a different shape

and color. For all datasets, REP outperforms the other approaches except for Mozilla and

VSCode. On average, REP outperforms SABD by 22.3% in terms of RR@10 across 6 project

data. As presented in Table 3.9, both Mozilla and VSCode have the largest number of

BRs and duplicates BRs. For these two projects, SABD shows comparable results with

REP and even outperforms on VSCode dataset by 9% in terms of RR@10. Siamese Pair,

HINDBR, and DC-CNN show fluctuating results. Siamese Pair presents higher RR@𝑘 values

on Eclipse, Mozilla, and VSCode, while it demonstrates lower RR@𝑘 than HINDBR and

Hadoop on Spark and Kibana.

Component Analysis. As shown in Figure 3.5, REP is the winner in 5 out of the 6 datasets

and it takes advantage of the information from most of the fields. Thus, we investigate REP

to understand the contribution of each component in DBRD. REP initializes the weights of

the textual features higher than the rest of the features. Additionally, the initial weight of
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(c) Hadoop
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(d) Spark
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(e) Kibana
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(f) VSCode

Figure 3.5: Recall Rate@k in the test data of Eclipse, Mozilla, Hadoop, Spark, Kibana,
and VSCode
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Table 3.10: Investigation of which component benefits REP

RR@𝑘 All w/o
description short_desc product component priority

1 0.460 0.327 0.350 0.456 0.458 0.450
2 0.544 0.415 0.458 0.527 0.554 0.540
3 0.610 0.456 0.494 0.575 0.598 0.602
4 0.646 0.490 0.510 0.617 0.633 0.637
5 0.673 0.515 0.533 0.644 0.658 0.665
6 0.690 0.531 0.552 0.662 0.663 0.679
7 0.704 0.544 0.569 0.671 0.671 0.694
8 0.706 0.556 0.579 0.681 0.683 0.706
9 0.715 0.565 0.600 0.687 0.683 0.712
10 0.721 0.573 0.613 0.698 0.692 0.717

the summary is also higher than the weight of the description. Besides, among the total

19 parameters tuned by gradient descent, 14 parameters relate to the textual fields. Based

on the observation, our assumption is that textual fields are the most crucial components

among all the fields considered. To further verify our hypothesis, we investigate the

contributions of each field value in REP. We run REP on the Eclipse dataset and each time,

set a certain field value as empty. Table 10 demonstrates the performances when we set

each field as empty. We can find that REP performs the best when all the information is

present. When the values of the fields of severity, priority, product, and component are

left empty, the performance is similar to the result when all the information is considered.

The RR@𝑘 is decreased at most 4%. However, when textual information is absent, we can

observe that the RR@𝑘 decreased at most by 21%. It indicates that textual information

plays a more important role than categorical information in DBRD.

Implications. Based on Figure 3.5, when k = 5, the best performing approach can reach

RR@𝑘 = 0.4-0.6. It indicates that a model can successfully recommend the duplicate BR

in the first five positions in 40%-60% of the cases. In other words, in the rest 40%-60% of

the cases, the model fails to recommend a duplicate in the first five positions. Among all

the projects in our dataset, 2.7% - 10% BRs are duplicates. A technique that has the RR@𝑘
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Figure 3.6: REP compared to the other four approaches in terms of successful predictions

of 0.4 - 0.6 means it can help eliminate at most 6% duplicate BRs of all the BRs. Thus,

it saves considerable costs and human labor. Besides, considering the large number of

candidate BRs, successfully recommending the correct master BR in the first five positions

is a challenging task by itself.

Overall, the experiment results show that it is promising to directly adopt certain DBRD

approaches designed based on Bugzilla data to other ITS data, such as REP. However, all

the approaches demonstrate relatively poor performance in the VSCode dataset. Besides,

we find that deep learning-based approaches are less robust than simpler approaches. (1)
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REP, which only includes handcrafted features and parameters, is considered as a simpler

approach compared to deep learning approaches. REP demonstrated similar performance

in both Kibana and Mozilla. However, these two datasets differ in three aspects, i.e.,

the ITSs, the number of BRs, and the duplicate BR rate: Mozilla contains categorical

information while Kibana does not, and Mozilla has 11 times more BRs and nearly 4

times higher duplicate BR rate than Kibana. (2) Since SABD and Siamese Pair show better

performances in Bugzilla data than in Jira and GitHub, it implies that it may not be ideal for

applying the current deep learning-based DBRD techniques that are specifically designed

for one ITS to detect duplicate BRs in different ITSs. (3) Eclipse, Mozilla, and VSCode

are the largest projects in terms of the number of BRs and the duplicate BR rate. Deep

learning-based SABD can achieve similar or better performance than REP. It infers that deep

learning-based approaches favor more training data than simpler approaches. (4) No one

can win every battle. Although REP is the best performer in five of the six datasets, it loses

to SABD in the VSCode dataset. It suggests that no one design is better than the rest all the

time, the performance of DBRD techniques could be subject to the dataset characteristics.

Furthermore, we draw the Venn diagrams (Figure 3.6) to demonstrate that each approach

can predict duplicates that the best performer cannot.

Answer 2: REP achieves the comparative results as SABD on the two largest projects and it works

well on smaller projects. REP demonstrates promising results, especially on small projects. On

the other hand, SABD shows better performance on large projects.

RQ3. How do the DBRD techniques in research compare to those in practice?

Full-Text Search Line FTS in Figure 3.5 shows the RR@𝑘 (for 𝑘=[1...10]) across the six

projects in comparison with the results for the research tools. We find that FTS is a

competitive baseline. It can outperform HINDBR and DC-CNN for all the projects, and it can



CHAPTER 3. DUPLICATE BUG REPORT DETECTION 88

also outperform Siamese Pair on four out of six projects. In comparison with SABD (the

second-best performing baseline), FTS can achieve similar performance for three out of

the six projects. Still, FTS performs worse than REP on all projects. The best-performing

research tool (REP) can outperform FTS by 22.1% to 62.7% in terms of RR@10.

VSCodeBot We take the intersection of VSCode BRs shown in Table 3.7 that are truly

duplicate BRs and appear in our test set (described in Table 3.9). We then use this data

to evaluate the performance of the various DBRD approaches. Figure 3.7 shows the

RR@𝑘 for each DBRD approach. As VSCodeBot recommends up to five potential duplicate

issues, we present RR@𝑘, and the 𝑘 ranges from 1 to 5. As shown in the figure, the two

research tools, i.e., REP, SABD, achieved better performance than VSCodeBot, in terms of

RR@5. Meanwhile, Siamese Pair shows a similar result compared to VSCodeBot in terms

of RR@5. FTSwhich is also adopted in practice also shows worse results than VSCodeBot.

Implications. Since FTS is based on exact word matching, the relatively good performance

of FTS indicates that many duplicate BRs are more likely to carry the same words in

BR titles. It also indicates the important role of textual information. FTS shows poor

performance in the VSCode dataset, it shows that the duplicate relationship in VSCode

dataset cannot be simply decided based on the words used in BR titles. However, SABD

and REP achieve comparable performance as VSCodeBot on the data we investigated, which

indicates it is promising to deploy research tools in practice.

Answer 3: FTS outperforms HINDBR and DC-CNN on all project data, and achieves competitive

performance with SABD on three project data. On VSCode BRs, REP and SABD performed better

than VSCodeBot. The best-performing research tool (REP) increases the performance of FTS by

46.1% in terms of average RR@10, and the performance of VSCodeBot by 9.8% in terms of

RR@5, respectively.



CHAPTER 3. DUPLICATE BUG REPORT DETECTION 89

1 2 3 4 5
k

0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l R

at
e@

k

REP
Siamese-Pair
SABD

DC-CNN
HINDBR

FTS
vscodebot

Figure 3.7: Recall Rate@𝑘 comparing the tools in research and in practice on the VSCode
data

Table 3.11: Age and state bias in an alternative ITS.

Bias Data Approach 𝑝-value |𝑑|

Age Hadoop
REP 0.65 0.13 (negligible)
Siamese Pair < 0.001 0.98 (large)
SABD 0.013 0.67 (large)

State

Hadoop
REP 0.199 0.35 (medium)
Siamese Pair 0.520 0.18 (small)
SABD 0.796 0.08 (negligible)

Spark
REP 0.143 0.4 (medium)
Siamese Pair 0.058 0.51 (large)
SABD 0.043 0.54 (large)

3.1.5 Discussion

Based on our empirical results, this section shares our insights to benefit future research

on DBRD.

Age/State Bias in an Alternative ITS

As mentioned in Section 3.1.3 Experimental Setup, to investigate the age bias (old vs.

recent data) and state bias (initial vs. latest state), we run experiments on the BRs from
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Bugzilla. However, it stays unknown whether age bias and state bias exist in another ITS.

Here, we investigate the age and state bias on data from an alternative ITS other than

Bugzilla.

Age bias in an ITS other than Bugzilla: In RQ1, the experimental results demonstrate

that there is a significant difference between tools in research on the old data and recent

data from Bugzilla. Besides Bugzilla, we also conducted experiments on the old data

from Jira. In RQ1, for Jira, we selected Hadoop and Spark. However, since the first issue

from Spark project was created on December 18, 2013. There are not enough old BRs to

investigate the age bias. Note that the same reason also applies to all projects selected in

our work that use GitHub ITS. Specifically, the first issue from VScode project was created

on October 14, 2015 and the first issue from Kibana project was created on February 6,

2013. Therefore, we are only able to conduct experiments on the old data of Hadoop,

which uses Jira as an ITS. Following what we did in the RQ1, we evaluate the three tools

REP, Siamese Pair, and SABD on the Hadoop old dataset (which contains BRs submitted

between 2012 and 2014). Table 3.11 shows the statistical test results of the performance of

these tools in Hadoop’s old and recent data. According to the 𝑝-value, we can find that age

bias is significant in most cases in Hadoop.

State bias in an ITS other than Bugzilla: In RQ1, the experimental results show that

there is no significant difference between tools performed with the initial states and the

latest states. Besides Bugzilla, we leverage the datasets shared by Montgomery et al. [116]

and recover the states of issues in Jira (i.e., Hadoop and Spark) to the end of the submission

day. We then perform the same experiments as RQ1 for state bias and report the results in

Table 3.11. As Table 3.11 shows, the state bias is also insignificant in most cases in Hadoop

and Spark, which uses Jira ITS. Note that since the issue change history in GitHub can be

deleted, the saved history may be incomplete. Thus, we did not investigate the state bias

in GitHub.
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Figure 3.8: Recall Rate@𝑘 in the test data of Eclipse-Old, Mozilla-Old

Performance Comparison of tools in research and practice on old data.

In RQ3, we demonstrate the performance comparison between tools in research and tools

in practice. The experimental results show that REP and SABD are the best performers.

FTS is better than HINDBR and DC-CNN. However, it remains unknown how different DBRD

tools compare with each other in the data from old age. For the two tools in practice

we evaluated, since VSCodeBot is not open-sourced, hence we can only investigate FTS.

Figure 3.8 shows that REP and SABD are still the best performers. Siamese Pair comes in

third. FTS is better than HINDBR and DC-CNN in both datasets. Even so, the performance of

all the approaches dropped in Mozilla’s old dataset. It suggests that when the size of a

dataset becomes larger, the performances of DBRD approaches do not always improve.

Failure Analysis

To understand what are the causes of DBRD approaches that failed to detect some dupli-

cate BRs, we investigated the three best performers, i.e., REP, SABD, and Siamese Pair. We

selected the largest projects from each of the ITSs, i.e., Mozilla, Hadoop, and VSCode. We
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conducted the following steps to understand the causes of the DBRD failures:

1. Firstly, we get the BRs that were not detected successfully in all five runs (out of 10

positions) by each approach in each dataset.

2. Secondly, we sampled 50 BRs, which failed to recommend the three approaches on

the three datasets.

We identified 3 causes of failed duplicate detection and described them as follows.

(1) Limited or Incomplete description. When the description is short, it does not provide

enough context to understand the issue. Issue reporters attach screenshots or other sup-

porting materials to the issue so that they neglect to write a detailed description. We also

found that some descriptions contain too many URLs with only limited textual informa-

tion. One such example is Bug 1668483 11 from the Mozilla project. The description of

this bug is full of long explicit URLs, which makes it hard for models to understand the

real content in this issue. Furthermore, we found that issue reporters may break the BR

description into multiple parts. They can write a BR description into several comments,

which were not considered by our work. One such example is Bug 1641043 12 from the

Mozilla dataset. The issue reporter actually described the issue in two consecutive parts,

while only the first block is called “description" and the second block is considered as

“comment". A complete version of the description may be helpful for DBRD approaches

to detect duplicates.

(2) Inability of the current approaches to understand the different ingredients in BR descriptions.

Since the current DBRD approaches only treat the textual information as unstructured,

they cannot extract useful information from the description. The useful information con-

11https://bugzilla.mozilla.org/show_bug.cgi?id=1668483

12https://bugzilla.mozilla.org/show_bug.cgi?id=1641043

https://bugzilla.mozilla.org/show_bug.cgi?id=1668483
https://bugzilla.mozilla.org/show_bug.cgi?id=1641043
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tained in the description may describe the failure, steps to reproduce, system information,

etc. They are usually arranged in a structured way. Aside from natural language descrip-

tion, there can also be (1) code snippets, (2) logs, (4) backtraces inside the description. A

more reasonable approach may be able to extract different types of information separately.

One such example is the duplicate BR pair from the VScode dataset, i.e., issue #105446 13

and issue #110999 14. Both issues contain the system information, steps to reproduce,

and screenshots. However, since the information in the descriptions was not considered

separately, it may be challenging for models to understand the failures. Besides textual

information, a BR can also contain images or screen recordings in the description. How-

ever, the approaches evaluated in our work only consider the textual information in BR

descriptions. Sometimes, the screenshot shows similar information. For instance, the

duplicate issues #108908 15 and #107104 16 in VScode repository. Among these two issues,

issue #108908 describes the bug as “overlap" and issue #107104 describes the bug as “loads

them twice", which does not look duplicate for sure. However, based on the screenshots

from both issues, we can find these two issues refer to the same bug. An approach that

can handle the screenshots and screen recordings would be helpful in these cases.

(3) Different failures with the same underlying fault. As indicated by Runeson et al. [142],

there are two types of duplicates: (1) they describe the same failure; (2) they describe

two different failures with the same underlying fault. We also encountered difficult cases

when both BR described the issue correctly, however, they described the two different

failures while the underlying fault is the same. Since the current approaches are based

on the similarity of BRs, it is challenging for them to detect the second type of duplicates.

13https://github.com/microsoft/vscode/issues/105446

14https://github.com/microsoft/vscode/issues/110999

15https://github.com/microsoft/vscode/issues/108908

16https://github.com/microsoft/vscode/issues/107104

https://github.com/microsoft/vscode/issues/105446
https://github.com/microsoft/vscode/issues/110999
https://github.com/microsoft/vscode/issues/108908
https://github.com/microsoft/vscode/issues/107104
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One such example is the duplicate BR pair from the Hadoop dataset, i.e., HBASE-24609 17

and HBASE-24608 18. The two BRs describe two different objects, i.e., MetaTableAccessor

and CatalogAccessor. Even for developers with some experience on Hadoop projects, it

may not be possible to recognize that they are duplicates.

Lessons Learned

Age bias and ITS bias should be considered for DBRD, and even for other tasks that

involve BRs. We show that two kinds of bias (age and ITS) affect the performance of

DBRD techniques. These biases must be considered while designing and evaluating

future DBRD techniques. Further, we believe that any task involving BRs, e.g., bug

localization [130, 109, 89], bug severity prediction [26, 105, 28], and bug triage [174, 151]

etc. should also provide due consideration for these biases. When evaluating an approach,

it would be better to consider the diversity of the ITS.

Using FTS and REP as a baseline for evaluating DBRD approaches. We observe that

FTS although simple, outperforms many other DBRD approaches for most projects (all

except Mozilla). REP, although proposed a decade ago, is the overall best performer.

Thus, we suggest future research include these simpler techniques as baselines. Future

state-of-the-art approaches need to demonstrate superior performance over these simpler

techniques.

Choose your weapon - Projects with a medium to low volume of historical BRs may

not benefit from deep learning-based tools. The two best-performing tools are REP

and SABD. SABD is deep learning-based, while REP is not. Comparing the performance

17https://issues.apache.org/jira/browse/HBASE-24609

18https://issues.apache.org/jira/browse/HBASE-24608

https://issues.apache.org/jira/browse/HBASE-24609
https://issues.apache.org/jira/browse/HBASE-24608
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Table 3.12: Mann-Whitney-U with Cliff’s Delta Effect Size |𝑑 | on RQ1 with controlling the
size of training/validation pairs

Bias Data # Sampled pairs Approach 𝑝-value |𝑑 |Training Validation

Age

Eclipse 3,342 108
REP 0.002 0.78 (large)
Siamese Pair < 0.001 0.9 (large)
SABD 0.040 0.54 (large)

Mozilla 68,396 2,418
REP 0.003 0.76 (large)
Siamese Pair 0.002 0.8 (large)
SABD 0.007 0.7 (large)

ITS

Jira 626 26
REP 0.047 0.37 (medium)
Siamese Pair < 0.001 0.81 (large)
SABD < 0.001 0.79 (large)

GitHub 724 28
REP 0.029 0.41 (medium)
Siamese Pair < 0.001 0.93 (large)
SABD 0.010 0.4775 (large)

of both tools in Figure 3.5, we can notice that their performance is similar for projects

with the largest number of BRs (Mozilla and vscode). However, there is a clear big gap

in performance for the other projects (although they still contain thousands of BRs as

training data). This suggests that the applicability of deep learning-based solutions may

be limited to very large ITSs with tens of thousands of BRs submitted over a few year

period (considering age bias and data drift phenomenon [143]). For most ITSs, non-deep

learning-based approaches may outperform. Note that, in our experiments, we did not use

all the historical data for training since our findings in RQ1 show that there is a significant

difference when applying a DBRD approach to old data and recent data. Besides, the old

and recent data carry different characteristics, e.g., the number of BRs, so the predictions

of the models trained in the past data may become less accurate in the recent data [194].

In addition, when training with more data, the training process takes longer and is more

computationally expensive.

As shown in Table 3.9, we identified that the number of BRs in different projects varies

a lot (i.e., the number of training and validation pairs are different). The size of training
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data might be a confounding factor. To understand whether our findings still hold when

we have the same number of training and validation pairs, we investigated the impact of

the data size. We adopted the pair generation strategy used by SABD [138]. The positive

pairs are all combinations of the BRs which belong to the same bucket. On the other hand,

the negative pairs are randomly generated by pairing a BR from one bucket with the BR

from another bucket. Since the number of positive pairs is fixed, we generated the same

number of negative pairs. For each bias and each dataset, we sampled the same number of

training pairs and validation pairs. For instance, when we work on age bias on the Eclipse

dataset, as the old dataset has 8,668 BR pairs, while the recent dataset contains 3,342 BR

pairs, we would sample the same number of 3,342 BR pairs from the old dataset (i.e.,

downsampling to the minority label). The number of training and validation pairs are

reported in Table 3.12. We then conducted the same experiment for RQ1 with the sampled

pairs as presented in Table 3.12. The 𝑝-values regard each bias are all cases. The detailed

results can be found in our replication package. 19 In the table, we find that the main

message of this paper is still valid even if we work on the same number of training and

validation pairs. Please note that the experimental data for state bias have no difference

in terms of size (i.e., the numbers of BRs for before and after state are the same), so we

excluded it in this additional analysis.

Future research approaches should compare with industry tools. Researchers have

largely ignored the comparison of DBRD techniques with industry tools. We conducted ex-

periments on both FTS and vscodebot. Our experiments showed that FTS and VSCodeBot

can outperform many research tools. While we have highlighted the need for evaluation

with industry tools in the context of DBRD, we believe our suggestion is valid even for

other SE tasks, too. Researchers should investigate if some alternative tools are used in

practice to solve the same/similar pain points and compare the performance of research

19https://github.com/soarsmu/TOSEM-DBRD

https://github.com/soarsmu/TOSEM-DBRD
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Table 3.13: Averaged seconds of per prediction used by different approaches in the test
data of Eclipse, Mozilla, Hadoop, Spark, Kibana, and VSCode

ITS Project REP Siamese Pair SABD DC-CNN HINDBR FTS

Bugzilla Eclipse 0.07 0.15 1.61 2.49 0.76 0.20
Mozilla 0.25 0.89 12.63 16.64 5.80 1.74

Jira Hadoop 0.07 0.07 0.80 1.19 0.30 0.10
Spark 0.13 0.05 0.69 1.02 0.28 0.08

GitHub Kibana 0.07 0.18 1.40 2.10 0.67 0.19
VSCode 0.08 0.70 3.53 5.56 1.92 0.40

tools with those “defacto” tools.

Efficiency matters for the pre-submission DBRD scenario. In the post-submission sce-

nario, the DBRD technique has the liberty of time to predict duplicates, but it is not the

case for the pre-submission scenario. The DBRD response time varies depending on the

number of BRs in the ITS. JIT duplicate recommendation used by Bugzilla, i.e., FTS, works

faster than most research tools as they only query the summary field of existing BRs. In

usability engineering, a response time of over 1 second is considered to interrupt a user’s

flow of thought [120]. Given that users can perceive a delay difference of 100 millisec-

onds [38, 120], some DBRD approaches, which take over 10 seconds to predict potential

duplicates, do not seem to meet the requirements. We report the seconds per prediction

spent by each approach. The experiments were run on a machine with Intel(R) Xeon(R)

Gold 5218R CPU @ 2.10GHz (Mem: 252G) with 4 GeForce RTX 2080Ti (11G). Only one

GPU was utilized when running a single deep learning model. From Table 3.13, we

can find that the time needed for each approach to make a prediction differs in different

projects. Generally speaking, for tools in research, REP, and Siamese Pair are faster than

the rest approaches, while in the largest project Mozilla, the run time difference is more

pronounced. REP is 3.56× faster than Siamese Pair, 50.52× faster than SABD, and 66.56×

faster than DC-CNN. For the tools in practice, since VSCodeBot is not open-sourced, we

cannot measure its run time on the pre-submission scenario. For FTS, we can find that it
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is faster than most research tools.

We suggest two potential topics for future DBRD research: (1) investigating the acceptable

delay for the pre-submission DBRD scenario and (2) optimizing DBRD response time. To

reduce the prediction time, future research can also consider reducing the search space.

For example, instead of including all the BRs submitted within the one-year time window

as candidates, further approaches can reduce the candidates first: applying a time-efficient

technique, such as BM25, to filter out the BRs with a low chance of being duplicated. After

that, expensive deep learning-based models can be used.

Comments should be considered. Based on our failure analysis, we found that comments

in the BRs may be helpful. Especially, when the issue reporter separates the description of

a BR into several parts. In the post-submission scenario, leveraging comments can provide

additional information for DBRD tools to represent a BR.

Different ingredients in the description should be handled separately. Although in

Bugzilla and Jira, there are dedicated fields for categorical information, we found that

the description can be arranged in a structured way. It can have steps to reproduce,

expected behaviour, and observed behaviour etc. Issue reporters usually include images

or videos inside the description. An approach that can understand different contents

from the description would be beneficial. For GitHub, where the information such as

system information, extensions used, and steps to reproduce are usually included in the

description, an approach that can extract all the useful information from the description

would be more effective.

Other resources in the project can be considered to improve DBRD accuracy further.

The current DBRD approaches are designed for detecting BRs with similar contents. If

future approaches want to tackle the duplicates that have different failures, we suggest they

consider other resources in the project, such as code base, to understand the relationship
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between different failures with the same root cause.

3.2 New Approach

Over the past decades, various DBRD approaches have been proposed [152, 54, 138, 75,

170]. With the rapid development of deep learning, many deep learning-based approaches

have been proposed in recent years [138, 75, 170]. They have demonstrated superior

performance when the bug repositories are large enough to train the deep learning models.

For instance, SABD [138] achieved over 0.6 in Recall Rate@20 in all the experimented

datasets. One of the common characteristics of these datasets is that they all contain more

than 80𝑘 bug reports and over 10𝑘 duplicate bug reports in the training data, which is large

enough to train a deep learning model. It is well acknowledged that deep learning models

require a large amount of data to achieve high precision [136]. However, bug repositories

of many projects are not large enough to train a deep learning model.

Based on the dataset provided by Joshi et al. [87], it was discovered that out of the 994

studied GitHub projects that have more than 50 stars and forks, the average number of

issues was 2,365. Additionally, it is interesting to note that many active projects, including

those with more than 100𝑘 stars, have fewer than 10𝑘 issues. For example, till 5th May

2023, both ohmyzsh/ohmyzsh [17] and axios/axios [10] have around 4𝑘 issues each, while

vuejs/vue [21] has around 10𝑘 issues. Therefore, we argue that most projects do not

have tens of thousands of issues. The repositories with tens of thousands of issues are

considered as atypical, while a typical repository contains less than or around 10𝑘 issues. It

is essential to highlight that young and fast-growing projects, although currently having

a few issues, require more attention in handling the DBRD challenge. For instance,

Significant-Gravitas/Auto-GPT [18], which was initially released on March 30, 2023,

now contains less than 2𝑘 issues while it gets 124𝑘 stars. How to improve the performance



CHAPTER 3. DUPLICATE BUG REPORT DETECTION 100

of DBRD in the typical bug repositories remains an open problem.

Before the development of deep learning, many non-deep learning-based approaches

have been proposed [142, 83, 152, 153] (we refer to them as “traditional approaches” in this

dissertation). These approaches are more promising for detecting duplicate BRs in typical

bug repositories than deep learning-based approaches. However, traditional approaches

rely on either the vector space model [142] or the bag-of-words model [83]. These models

cannot capture the semantics of BRs. We seek to improve the performance of non-deep

learning-based approaches by considering the semantics of BRs.

Recently, bLLMs, e.g., Vicuna [49], LLaMA 2 [159], and ChatGPT [15], have achieved out-

standing performance in a multitude of NLP tasks [55, 37, 131]. However, leveraging the

potential of bLLMs to improve DBRD’s performance is not trivial. The most straightfor-

ward way is to directly query bLLMs on whether two BRs are duplicates. However, this

is impractical due to the following reasons.

(1) Time-consuming and costly. To obtain the potential master BRs to which a given BR may

be duplicated, we must pair it with all the BRs available in the repository. All previously

submitted BRs are considered duplicate candidates when a new BR is submitted. It is

infeasible to query bLLMs to compare the given BR with all the BRs in the repository,

as the bLLMs’ response is not instantaneous. While speeding it up is possible (e.g., by

running many queries at once), it quickly gets very costly for bLLMs such as ChatGPT,

which operates on a pay-per-use basis for their API usage.

(2) Ignorance of other BRs in the repository. If a method only compares two BRs at a time, it

will not take into account the information present in the other BRs stored in the repository.

Therefore, it would be hard to decide the relative order of all the duplicate candidates

in order to recommend the top-𝑘 duplicate candidates. Although one possibility is in

addition to querying ChatGPT on whether the BR pair is duplicated or not, we ask



CHAPTER 3. DUPLICATE BUG REPORT DETECTION 101

ChatGPT to provide a measure of how confident it is in its answer, expressed as a similarity

score or confidence score. However, without considering the information from other BRs,

the similarity score will be less reliable.

(3) bLLMs are generative AI techniques which are designed to generate contents. Although bLLMs

have achieved impressive performance in a multitude of NLP tasks, many researchers

argue that bLLMs are only good at language abilities but not at actual reasoning [111, 31].

Thus, to take full advantage of bLLMs, we carefully design the task to ensure its suitability

for bLLMs. As DBRD requires some reasoning on how two BRs are duplicated to each

other, it is not suitable to query bLLMs directly.

In this study, we present Cupid, which stands for leveraging ChatGPT for more accurate

duplicate bug report detection. Cupid aims to tackle the abovementioned challenges when

directly querying LLMs for DBRD. We propose to leverage LLMs as an intermediate step

to improve the performance of the traditional DBRD approach. Based on our earlier

benchmarking study, REP [152] demonstrates the best performance in the datasets with

a typical number of issues, which is also the focus of this work. Thus, we select REP

as the backbone duplicate retrieval method. Specifically, Cupid leverages state-of-the-art

ChatGPT to identify keywords from bug reports and then incorporate them with REP to

achieve better performance. By doing so, Cupid avoids using ChatGPT to compare the

given bug report with all the bug reports in the repository. Furthermore, by standing on

the shoulder of the traditional DBRD approach, Cupid also considers the information of

the other bug reports in the repository. In particular, 𝐵𝑀25𝐹𝑒𝑥𝑡 used by REP calculates

inverse document frequency (IDF), which is a global term-weighting scheme across all the

bug reports. In addition, Cupid prompts ChatGPT to identify keywords from bug reports,

which requests ChatGPT to generate a list of relevant keywords based on the content of a

bug report. Keyword identification is closer to a generative task than a decision-making

task.
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Figure 3.9: Cupid contains three stages: In Stage 1, it applies selection rules to select the
test BRs that need to be processed; In Stage 2, it utilizes ChatGPT to process the selected
BRs; In Stage 3, it leverages REP to retrieve potential master BR for each test BR.

3.2.1 Cupid

We propose Cupid to combine the advantages of both the traditional DBRD approach

and LLM. As mentioned earlier, our work focuses on solving the DBRD challenge in

the repositories with a typical number of issues; evidence shows that traditional DBRD

approaches would fit more in this condition than deep learning-based approaches [183].

Figure 3.9 shows an overview of the proposed method. The overall process consists of

three main stages: (1) Applying selection rules to select the BRs that need to be processed

by ChatGPT, (2) Running ChatGPT with prompt template to get the essential keywords of

the selected BRs, and (3) Applying REP to retrieve potential master BRs.

In the following sections, we first introduce the datasets used in this work. Then, we

describe the selection rules and prompt template used by Cupid. Finally, we introduce

the REP approach.

Applying Selection Rules

Considering the computational cost of ChatGPT, we did not run ChatGPT on all the BRs

in the test dataset. Similarly, in practice, we do not need to run ChatGPT on each newly

submitted BR. We explore and propose selection rules to improve efficiency while keeping
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accuracy. These rules are based on the length and content of the BRs, to prioritize BRs

that are harder to process by REP while reducing the number of BRs fed into ChatGPT.

The selection criteria are as follows:

Length: We select BRs whose description is considered to be long. We consider BRs

whose description is longer than n words as long BRs. We get n by calculating the 75th

percentile of the description length in the training set. We select long BRs because long

BRs are usually not concise and contain long stack traces and code snippets. These long

BRs would make it challenging for REP to retrieve the potential master BRs.

Content: We select the BRs whose description contains code snippets or URLs. We use

regular expressions to match and select these BRs. The choice of regular expressions is

due to their simplicity and effectiveness in matching specific patterns like URLs and code

snippets within text. We leave applying advanced techniques such as island grammars

for future work.

Note that after keeping long BRs, we still have BRs that contain code snippets or URLs.

Some BRs are very short and with the majority of the content being code snippets or URLs.

For developers, this information is useful. However, for a DBRD method, this information

can be hard to process. We select these BRs because not all the code snippets and URLs

are useful for REP to retrieve the potential master BRs. We also do not directly remove

code snippets or URLs. The reason is that we want to keep the original structure of the

BRs for ChatGPT to understand the language better. We then utilize ChatGPT to identify

keywords from these BRs.
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Prompt Template:
I have a BR which conta ins summary and desc r ip t i on . I want you to s e l e c t

keywords from both par t s which keep the main meaning of the BR . These
keywords would be used for dupl i ca te BR de tec t ion . Output format : ‘Summary
: Se l ec t ed Keywords \n Descr ipt ion : Se l ec ted Keywords ‘ \n\n >>> Summary :
[Summary] \n\n >>> Descr ipt ion :

[Description]

Running ChatGPT with Prompt Template

After Stage 1, we run ChatGPT on the selected BRs, i.e., either (1) the description is long

or (2) the description contains code snippets or URLs.

Prompt [104] is a set of instructions that can be used to probe bLLMs to generate the target

outcome [31]. Prior studies have empirically shown that ChatGPT is sensitive to prompts.

Thus, the prompts should be carefully designed for different tasks to enable bLLMs to

demonstrate their abilities.

We craft the prompt template used by Cupid as shown below.

This template is designed for a single-turn dialogue. For each BR, we open a new dia-

logue with ChatGPT. After getting the response from ChatGPT, we replace the original

Summary and Description in the BR with the returned identified keywords of Summary

and Description. We keep the remaining part of the BR unchanged.

Regarding the design of the prompt template, our intuition is that we consider BRers

are likely to have more expertise and domain knowledge than ChatGPT. Therefore, the

language and terms they use when reporting bugs may be similar to each other, and

DBRD methods can leverage this similarity. It would benefit more not to replace the

whole expression but rather select and keep the essential information for DBRD methods

to process. We also conduct experiments with other prompt templates to support our

intuition and report the results in Section 3.1.4.
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Retrieving Potential Master Bug Reports

Considering the superiority of REP in the task of DBRD shown in a recent study [183],

especially on projects with a typical number of issues, we use REP as the DBRD approach

in Cupid. Here, we briefly introduce the REP approach to make the dissertation self-

contained. We refer the readers to the original paper [152] for more details.

As shown in Formula 3.1, REP is a linear combination of seven features, including textual

features and categorical features.

𝑅𝐸𝑃(𝑑, 𝑞) =
7∑
𝑖=1

𝑤𝑖 · 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 (3.1)

, where 𝑑 is the BR in the repository 𝑅, 𝑞, is the query (i.e., new BR), 𝑤𝑖 is the weight of

the 𝑖-th feature, and 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 is the 𝑖-th feature. The first two features are both textual

features, and the rest five features are categorical features. Figure 3.2 shows how to get
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each feature.

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1(𝑑, 𝑞) = 𝐵𝑀25𝐹𝑒𝑥𝑡(𝑑, 𝑞) //of unigrams

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒2(𝑑, 𝑞) = 𝐵𝑀25𝐹𝑒𝑥𝑡(𝑑, 𝑞) //of bigrams

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒3(𝑑, 𝑞) =


1, if 𝑑 · 𝑝𝑟𝑜𝑑 = 𝑞 · 𝑝𝑟𝑜𝑑

0, otherwise

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒4(𝑑, 𝑞) =


1, if 𝑑.𝑐𝑜𝑚𝑝 = 𝑞.𝑐𝑜𝑚𝑝

0, otherwise

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒5(𝑑, 𝑞) =


1, if 𝑑.𝑡𝑦𝑝𝑒 = 𝑞.𝑡𝑦𝑝𝑒

0, otherwise

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒6(𝑑, 𝑞) =
1

1+ | 𝑑.𝑝𝑟𝑖𝑜 − 𝑞.𝑝𝑟𝑖𝑜 |

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒7(𝑑, 𝑞) =
1

1+ | 𝑑.𝑣𝑒𝑟𝑠 − 𝑞.𝑣𝑒𝑟𝑠 |

(3.2)

The first two features regard the textual similarity between two BRs over the fields summary

and description. These two textual features are calculated by 𝐵𝑀25𝐹𝑒𝑥𝑡 between BR 𝑑

and query BR 𝑞. 𝐵𝑀25𝐹 [137, 179] is an effective textual similarity function for retrieving

documents that have structures. The authors of REP extend 𝐵𝑀25𝐹 by considering term

frequencies in queries and proposed 𝐵𝑀25𝐹𝑒𝑥𝑡 .

In 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1, summary and description are represented in uni-gram, while in 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒2,

summary and description are represented in bi-gram. Thus, the input of 𝐵𝑀25𝐹𝑒𝑥𝑡

consists of a bag of uni-grams and bi-grams in both features. For 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒3−5, they are the

categorical features of product, component, and type, respectively. If the corresponding

field value from 𝑑 and 𝑞 is the same, the value of the feature is 1, otherwise, it is 0. For

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒6−7, they are the categorical features of priority and version, respectively. They



CHAPTER 3. DUPLICATE BUG REPORT DETECTION 107

are calculated by the reciprocal of the distance between the corresponding field value

from 𝑑 and 𝑞. Overall, the REP approach contains 19 free parameters with different initial

values. These parameters are tuned by gradient descent.

3.2.2 Study Setup

Research Questions

To understand whether Cupid performs better compared to existing state-of-the-art ap-

proaches and whether each component of Cupid is useful, we answer the following two

research questions (RQs):

• RQ1: How effective is Cupid compared to the state-of-the-art approaches?

• RQ2: How effective are the components of Cupid? To answer this RQ, we conduct an

ablation study on the components of Cupid. This RQ is further divided into the

following sub-RQs:

– RQ2.1: How effective is the prompt template?

– RQ2.2: How effective are the selection rules?

– RQ2.3: How effective is ChatGPT compared to other bLLMs?

Dataset

As mentioned in Section 3.2, we are concerned about boosting the performance of DBRD,

especially in the bug repositories with the typical number of issues. Therefore, the target

datasets contain a typical number of issues. We employ three datasets, i.e., Spark, Hadoop,

and Kibana datasets, which are provided by a recent benchmarking study by Zhang et
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Table 3.14: Dataset statistics. Cupid here refers to the selected BRs run by ChatGPT.

Dataset Total Bugs Train. Pairs Valid. Pairs Test

Dup. Bugs Cupid

Spark 9,579 626 26 81 59
Hadoop 14,016 626 27 92 57
Kibana 17,016 724 28 184 114

al. [183]. These datasets contain around 10k issues each, which is considered a typical

number of issues. These datasets are recent issues, ranging from 2018 to 2022, which

addressed the age bias, i.e., the model performs differently on the recent data and old

data. Spark and Hadoop are two popular open-source distributed computing frameworks.

They both use Jira as their ITS. Kibana is a visualization tool for Elasticsearch, and it uses

GitHub as its ITS. The statistics of the datasets are shown in Table 3.14. The duplicate and

non-duplicate pairs were sampled by Zhang et al. [183]. Their ratio is 1:1. We obtained

the data in the dataset provided by Zhang et al. In our experiment, we fixed the number

of training and validation pairs. The number of duplicate BRs in the test set is the BRs we

investigate. We report the performance of each approach in terms of how they perform in

retrieving the master BRs.

Evaluation Metrics

We adopt the same evaluation metrics as indicated in Section 3.1.3.

Compared Techniques

In this work, we compare Cupid with state-of-the-art DBRD techniques, which consider

DBRD as a ranking problem, i.e., REP [152], Siamese Pair [54], and SABD [138]. Sec-

tion 3.1.1 contains a brief introduction to these methods.
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In RQ2.3, we also compare ChatGPT with other open-source bLLMs. We select three

bLLMs, i.e., Vicuna, WizardLM, and Llama 2-Chat based on their performance in the

MMLU benchmark on the chatbot leaderboard 20 in August 2023. Due to the limit of

computing resources, we could only run the bLLMs containing less or equal to 13B

parameters. We introduce these bLLMs in Section 2.2.1.

ChatGPT Setup

Given that ChatGPT is still fast evolving, it has undergone several iterations [12]. In this

study, we worked on the GPT-3.5 version. To interact with ChatGPT, we used an open-

sourced API [9] that creates a chat window on the ChatGPT website. It saved us from

the manual labor of opening a chat window and copying the response back. Although

an official ChatGPT API is available, we cannot use it without paying for it. Therefore,

we chose to use the free version of ChatGPT, which we believe has a wider range of users

than the paid one. As such, our results would be more valuable as they apply to a wider

range of users.

During the experiments, for each query BR, we initialize a new conversation to avoid

the influence of the previous conversation on other BRs. Since ChatGPT may generate

different answers for the same query, we ran ChatGPT five times for each query and

aggregated the results (i.e., summing up the 5-round results) to obtain the final answer.

Implementation

To fairly compare Cupid with the baselines, we fix the training pairs for all techniques.

Since there is randomness in the deep learning-based models, i.e., Siamese Pair and

20https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Table 3.15: RR@𝑘 obtained on the Spark dataset. The best performance in terms of
RR@10 is highlighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.346 0.383 0.457 0.481 0.481 0.556
Siamese Pair 0.037 0.049 0.059 0.064 0.074 0.121
SABD 0.202 0.247 0.281 0.294 0.304 0.331

Cupid 0.346 0.395 0.432 0.469 0.481 0.593

Table 3.16: RR@𝑘 obtained on the Hadoop dataset. The best performance in terms of
RR@10 is highlighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.402 0.489 0.522 0.554 0.576 0.609
Siamese Pair 0.033 0.046 0.057 0.063 0.076 0.093
SABD 0.215 0.267 0.293 0.304 0.324 0.411

Cupid 0.391 0.511 0.565 0.576 0.609 0.652

SABD, the reported results were the average results after running them five times. The

implementation details can be found in our replication package.21

3.2.3 Study Results

RQ1: Comparing with baselines

Table 3.15, 3.16, and 3.17 show the results of Cupid and the baselines on the Spark, Hadoop,

and Kibana datasets. Overall, Cupid consistently improves the DBRD performance in

terms of RR@10 on all three datasets, yielding an improvement of 6.7% (Spark) to 8.7%

(Kibana) over the prior state-of-the-art approach REP. This improvement is obtained by

successfully utilizing the language generation ability of ChatGPT to transform the BRs into

a format where only essential information is kept. In comparison with the best-performing

21https://github.com/soarsmu/Cupid

https://github.com/soarsmu/Cupid
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Table 3.17: RR@𝑘 obtained on the Kibana dataset. The best performance in terms of
RR@10 is highlighted accordingly.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

REP 0.364 0.440 0.527 0.560 0.587 0.620
Siamese Pair 0.020 0.036 0.050 0.063 0.076 0.092
SABD 0.293 0.382 0.428 0.467 0.489 0.555

Cupid 0.408 0.522 0.571 0.603 0.62 0.674

deep learning-based approach, i.e., SABD, we observe an improvement of up to 79.2% on

the Spark dataset. In the low-volume datasets, SABD and Siamese Pair lose to non-deep

learning approaches, i.e., REP and Cupid.

Comparing the performance of Siamese Pair and SABD in all three datasets, we can find

that Siamese Pair suffers more from the challenge of limited training data. Siamese Pair

performs less than 50% of SABD in all the three datasets in terms of RR@10. We argue that

when there is a lack of adequate training data, comparing different deep learning-based

models is less meaningful.

Dataset-wise, all approaches perform relatively worse on the Spark dataset and relatively

better on the Kibana dataset. The observation aligns with the findings from prior stud-

ies [138]: the same DBRD approach, i.e., SABD, achieves a variety of RR@10 on different

datasets examined, ranging from 0.55 (on OpenOffice dataset) to 0.7 (on Netbeans dataset).

It shows that the performance of a DBRD technique also depends on the dataset charac-

teristics. This observation inspires us that it would be beneficial for each dataset if we

tune the prompt template based on the characteristics of each dataset. We leave this for

future work to boost the performance further.

Figure 3.10 shows the Venn diagrams for successful predictions made by the prior state-

of-the-art method, i.e., REP, and Cupid on each dataset and all datasets combined. We

see that Cupid successfully retrieves more master BRs compared to REP. On the Hadoop
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(a) on Spark dataset (b) on Hadoop dataset

(c) on Kibana dataset (d) All the three datasets

Figure 3.10: Successful prediction Venn diagram

and Kibana datasets, only Cupid successfully retrieved more master BRs, while REP did

not successfully retrieve more.

To demonstrate the ability of Cupid, we show an example, i.e., the query BR isHADOOP-17091[14]

where REP failed to predict the correct master BR in the top-10 positions, while Cupid

managed to. Figure 3.11 shows the summary and description of this issue. We can see that

there is no natural language in the description, containing only error messages. Thus, REP

considered the most possible master BR to be HADOOP-16648, which also contains a large

portion of the error messages. We checked the single-run result by ChatGPT. Thanks

to the language understanding and generation ability of ChatGPT, Cupid identified

the keywords: Javadoc, HTML version, HTML4, HTML5, warning, comments, valid,

GeneratedMessageV3, package, not found, error from thedescriptionof HADOOP-17091.

The generated shorter description on the query BR has several words overlap with the
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Figure 3.11: The case where Cupid succeeded while REP failed: HADOOP-17091

description of the real master BR (HADOOP-16862). It enables Cupid to rank at the first po-

sition successfully. Since the real master BR has a long error message as the description,

REP failed to retrieve it. This example shows that ChatGPT can be helpful when descrip-

tions are long and contain non-natural language texts. It can generate the most important

keywords, which are vital for duplicate detection.

Based on Figure 3.6, we can also observe that on the Spark dataset, REP can actually predict

a BR, i.e., SPARK-33661 [20] that Cupid fails to predict. Figure 3.12 shows the summary and

description part of this issue. We checked the single-run result by ChatGPT. The identi-

fied keywords are: Summary: Unable, load, RandomForestClassificationModel, trained,

Spark 2.x, Description: load, RandomForestClassificationModel, trained, Spark

2.x, Spark 3.x, exception, raised, schema incompatibility, saved, data, expected,

existing, random forest models, upgrade, retrain. The selected keywords look

reasonable since they keep the important identities that are related to this bug. The mas-
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Figure 3.12: The case where Cupid failed while REP succeeded: SPARK-33661

ter BR, which was listed at the top-1 position by Cupid is SPARK-31169 [19]. This BR

is about different results that are obtained when building random forest models using

different versions of Spark. It is clear that it is not a duplicate of SPARK-33661. However,

it is not hard to find that in the summary of this issue, common words exist, such as Random

Forest, SparkML 2.3.3 vs 2.4.x. In addition, in the description part, we can find sim-

ilar words, e.g., train,version,spark,model, which are quite relevant to the identified

keywords in SPARK-33661. This example shows that, in some cases, keywords are not

sufficient to identify duplicate BRs. The same set of words may lead to different errors.

Answer to RQ1: Cupid outperforms the best baseline by 6.7%, 7%, and 8.7% in terms

of RR@10 on the Spark, Hadoop, and Kibana datasets, respectively.
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Listing 3.1: Prompt Template 1
Prompt Template 1:
Rephrase the fol lowing BR in f i v e d i s t i n c t s ty l e s , to avoid r e pe t i t i on , while

keeping i t s meaning . Output format : ‘ [ 1 −5 ] . Summary : [ Rephrased Summary]
\n Descr ipt ion : [ Rephrased Descr ipt ion ] ‘ \n\n >>> Summary : [SUMMARY] \n\n

>>> Descr ipt ion : [DESCRIPTION]

RQ2: Ablation Study

RQ2.1: The effectiveness of Prompt Templates. We first investigate the effectiveness

of different prompt templates on the Spark dataset due to the fact that it is the smallest

dataset. We came up with a basic prompt template (i.e., Prompt Template 1), as shown in

Listing 3.1.

In Prompt Template 1, we aim to describe the task and requirement in a simple way.

We also specify the output format. The hypothesis is different stakeholders, e.g., users,

developers, or testers, have different expertise and experience levels; thus, how they write

BRs would vary. Therefore, we prompt ChatGPT to get alternative BRs. This procedure can

be viewed as data augmentation [51], where the goal is to generate auxiliary samples that

are semantically similar to the original sample. In the beginning, we believed prompting

ChatGPT to rephrase the BR should be one of the most direct ways to achieve this goal.

Thus, we further experimented with a more comprehensive Prompt Template 2, where we

added a persona description and also included the aim of this step. This prompt template

is an augmented version of Prompt Template 1. Listing 3.2 shows the template.

Table 3.18 shows the results of querying ChatGPT with the two templates above and with

the template employed in Cupid. We observe that Prompt Template 2, which is more

comprehensive than Prompt Template 1, indeed leads to a slightly better performance:

it surpassed the method with Prompt Template 1 by 2.3% in terms of RR@10. Although

these two templates convey very similar meanings, with one being more succinct and
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Listing 3.2: Prompt Template 2
Prompt Template 2:
I want you to ac t as a c o l l a b o r a t o r fo r maintaining BRs from a software

p r o j e c t . Your job i s to rephrase the BR , to avoid r ep e t i t i on , while
keeping i t s meaning . The aim of t h i s s tep i s to help f i l t e r dupl i ca te BRs .
You wi l l need to wri te f i v e d i f f e r e n t vers ions of the BR you encounter .

You can de le t e the contents you perce ive use l e s s . Output format : ‘ [ 1 −5 ] .
Summary : [ Rephrased Summary] \n Descr ipt ion : [ Rephrased Descr ipt ion ] ‘ . Now
, your need to rephrase the fol lowing BR : \n\n >>> Summary : [SUMMARY] \n\
n >>> Descr ipt ion : [DESCRIPTION]

the other being more verbose, they did make an impact on the performance of running

rephrased BRs in DBRD. Using the final template in Cupid can boost the performance

of these two prompt templates by 11.7% in terms of RR@10. These results indicate the

significance of prompts.

At first glance, both Prompt Templates 1 and 2 seem more intuitive than the final prompt

template we use (the one shown in Section 3.2.1). Prompt Template 1 and 2 queried

ChatGPT to rephrase, while the final prompt in Cupid queried ChatGPT to select keywords.

However, after checking the rephrased BRs generated by ChatGPT with Prompt Tem-

plate 1 and 2, we believe rephrasing the test BRs is not the right direction to pursue. In

retrospect, it would make more sense to rephrase all BRs in the dataset, regardless of

training or testing. However, as mentioned in Section 3.2, the drawback is the expenses of

running ChatGPT. There is a widely-experienced error: Too many requests in 1 hour,

try again later [8], which many users complain about. Despite the lack of an official

document specifying the exact number of requests that can be made with ChatGPT per

hour, this issue commonly occurs, hindering the whole DBRD process. Given the major

difference between the query BR and candidate BRs, only rephrasing query BRs would not

make it easier to retrieve the master BRs. In the context of traditional DBRD approaches,

it could make the distance between the rephrased BR and the master BR further.

RQ2.2: The effectiveness of Selection Rules. Here, we also conducted experiments on
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Table 3.18: Ablation study on different prompt templates: RR@𝑘 obtained on the Spark
dataset. The best performance in terms of RR@10 is highlighted accordingly. PT is short
for “prompt template”.

Method RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

w/ PT 1 0.309 0.37 0.432 0.457 0.469 0.519
w/ PT 2 0.333 0.37 0.432 0.457 0.469 0.531
Cupid 0.346 0.395 0.432 0.469 0.481 0.593

Table 3.19: Number of test bugs and bugs that need to run after adopting selection rules.

Selection Rule Dataset

Spark Hadoop Kibana

None 81 92 184
Length 33 25 77
Length→Content 59 57 114

Spark dataset to investigate the effectiveness of selection rules.

Table 3.19 shows how many BRs need to query ChatGPT after adopting (1) no-selection

rules, (2) selection by length, and (3) selection first by length and then content. If we only

use length as the selection criteria, we will only need to run ChatGPT on 40.7%, 27.2%,

and 41.8% of the original test BRs in Spark, Hadoop, and Kibana dataset, respectively.

While the computational cost would be reduced, it is essentially a trade-off: we want to

achieve both efficiency and accuracy, which can be contradictory in some cases. We want

to take full advantage of ChatGPT with minimal computational costs. Other than length,

we also identify the content criteria. After adopting both length and content criteria, the

BRs needed to be processed by ChatGPT increased and accounted for 72.8%, 62%, 62%,

which still saved more than 25% BRs from processing.

Table 3.20 shows the corresponding results of applying selection rules. Comparing the

performance of no selection rules, i.e., querying all the test BRs with ChatGPT, and

applying both selection rules, we can observe that after applying the rules, RR@10 improves

by 2.2%. Despite only making a small improvement, it frees at least 25% of the BRs in the
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Table 3.20: Ablation study on selection rules: RR@𝑘 obtained on the Spark dataset.

Selection RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

None 0.333 0.395 0.432 0.469 0.481 0.58
Length 0.333 0.37 0.395 0.444 0.457 0.556
Length→Content 0.346 0.395 0.432 0.469 0.481 0.593

test set from querying ChatGPT. Here, we do not only save the computational cost but

also improve accuracy.

It is surprising to find that by only applying the length criteria, the performance actually

drops. Table VI shows that in the Spark dataset, only 40.7% are considered long. Thus,

more than half of bug reports remain the same without querying ChatGPT. However,

other than the lengthy bug reports, short bug reports with little useful information are

also confusing for REP. It is not rare that bug reporters paste error messages or code

snippets or even directly a URL with little meaningful text as the description. ChatGPT

works like a filter in these short bug reports to exclude useless information for the DBRD

task. It thus makes sense that if we increase the number of bug reports processed by

ChatGPT from 33 to 59, the performance increases by 6.7% in terms of RR@10. This result

again shows the importance of trade-offs in efficiency and accuracy. Ultimately, if we

include both filtering rules, the resulting method can achieve the best performance. It

showcases the effectiveness of the filtering rules.

RQ2.3: The effectiveness of ChatGPT. Here, we have conducted experiments on the Spark

dataset to assess the efficacy of ChatGPT in comparison to other open-source bLLMs. In

a similar manner, we executed all three bLLMs five times, while the generated responses

across all five runs remained the same. We adapted the final version of the prompt template

from Cupid, making slight modifications to ensure compatibility with the appropriate

prompt format for each LLM. Listing 3.3 shows the prompt templates employed by each

LLM. The main element, denoted as select keywords, remains consistent across all templates,
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Listing 3.3: Prompt Template for Vicuna, WizardLM and Llama 2-Chat
Prompt Template for Vicuna and WizardLM:
"A chat between a curious user and an a r t i f i c i a l i n t e l l i g e n c e a s s i s t a n t . The

a s s i s t a n t gives helpful , de ta i led , and p o l i t e answers to the user ’ s
quest ions .\n\nUSER : I w i l l given you a BR summary and a BR desc r ip t i on .
You need e x t r a c t the u s e f u l l keywords from summary and descr ip t ion ,
r e s p e c t i v e l y . These keywords would be used for dupl i ca te BR de tec t ion . You
need to reply l i k e t h i s :\nSummary Keywords :\ nDescr ipt ion Keywords :\

nASSISTANT : Sure !</s>\nUSER : Bug repor t summary : { }\ n\nBug repor t
desc r ip t i on : { }\ n\nASSISTANT : Summary Keywords : " ,

Prompt Template for Llama 2-Chat:
"<<SYS>>\nA chat between a curious user and an a r t i f i c i a l i n t e l l i g e n c e

a s s i s t a n t . The a s s i s t a n t gives helpful , de ta i led , and p o l i t e answers to
the user ’ s quest ions .\n<</SYS>>\n [ INST]\ nUser : I w i l l given you a BR
summary and a BR desc r ip t i on . Note tha t the desc r ip t i on can include log/
er ror message or s tack t r a c e s . You need e x t r a c t the u s e f u l l keywords from
summary and descr ip t ion , r e s p e c t i v e l y . These keywords would be used for
dupl i ca te BR de tec t ion . You need to reply l i k e t h i s :\nSummary Keywords :\
nDescr ipt ion Keywords :\nBug repor t summary : { }\ n\nBug repor t desc r ip t i on :
{ }\ n\n[/INST]\n"

Table 3.21: Ablation study on ChatGPT: RR@𝑘 obtained on the Spark dataset.

Model RR@1 RR@2 RR@3 RR@4 RR@5 RR@10

Vicuna 0.358 0.395 0.432 0.432 0.457 0.506
WizardLM 0.370 0.395 0.420 0.444 0.469 0.568
Llama 2-Chat 0.296 0.358 0.383 0.407 0.42 0.494
ChatGPT 0.333 0.395 0.432 0.469 0.481 0.58

while only the formats differ.

Table 3.21 shows the results with the comparison among ChatGPT and the other three

bLLMs. We can observe that WizardLM can achieve a similar performance as ChatGPT

with only 2% drop in terms of RR@10. Vicuna and Llama 2-Chat perform worse compared

to ChatGPT. The good performance of WizardLM makes it promising to use an open-

source LLM for the DBRD task. Further investigation on when and why open-source

bLLMs lose to ChatGPT can be put to take full advantage of the latest advancement of

bLLMs.
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Answer to RQ2: Both prompt templates and selection rules are effective in improving

the performance of Cupid. Furthermore, ChatGPT is better than the three selected

open-source bLLMs.

3.2.4 Threats to Validity

Internal. The main internal threat is whether there is data leakage in ChatGPT. However,

since we do not have access to ChatGPT’s training data, we cannot verify whether there

is data leakage in ChatGPT. Even so, since we did not directly use ChatGPT to compare

whether two BRs are duplicates, instead, we utilize ChatGPT indirectly, which may not

benefit much from memorizing the training data. Furthermore, we noticed that ChatGPT

did not exhibit unrealistic perfect performance, e.g., reaching 0.9 at RR@10, across different

prompt structures. It suggests that it is less likely for ChatGPT to rely solely on the

memorization of its training data. Thus, we believe this threat is minimal.

External. The primary external threat is the generalizability of our findings. This study

focuses on datasets with a typical number of BRs, roughly 10𝑘 issues. Therefore, our

results may not extend to datasets with a significantly greater number of BRs, such as

those containing tens of thousands of issues. Nevertheless, we believe that our findings

remain valuable for the majority of projects. This is supported by the fact that in a

dataset of 994 high-quality projects from GitHub, each project contains an average of 2𝑘

issues [87]. Another external threat is that ChatGPT is fast-evolving. Our results may not

be generalized to future ChatGPT versions.
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3.3 Summary

In the benchmark work, we evaluated DBRD techniques both in research and practice.

We analyzed the factors affecting DBRD performance. We showed that on recent data,

DBRD approaches demonstrated significantly different performance when compared to

their performance on old data. Clearly, a DBRD technique that works well on data from

many years ago but no longer so on recent data, should not be useful to developers to-

day. Therefore, future research should use a recent data benchmark for evaluation. We

investigated three ITSs and two projects from each of them. We propose that future re-

search should consider GitHub for DBRD since the existing approaches do not perform

as well on GitHub as they do on Bugzilla and Jira. Taking a step ahead, we also compared

industry tools like Bugzilla’s FTS and VSCodeBot. We observe that although some tools

proposed in research work perform better, FTS can serve as a strong baseline for compari-

son. Furthermore, a DBRD technique, REP, proposed in 2011, outperforms advanced deep

learning-based techniques that are recently proposed and should also be used as a strong

baseline.

In the follow-up work, we focus on the task of DBRD on projects with a typical number

of bug reports. We investigated how to combine the advantages of both the traditional

DBRD approach and bLLMs and proposed Cupid. Cupid leverages ChatGPT to identify

keywords as the input of the state-of-the-art traditional DBRD approach REP. We conduct a

comprehensive evaluation on three datasets and compare Cupid with three baselines. The

experimental results show that Cupid outperforms the state-of-the-art DBRD techniques

in terms of RR@10 on all the datasets. Particularly, Cupid achieves high RR@10 scores

ranging from 0.59 to 0.67 on all the datasets investigated.



Chapter 4

Pull Request Title Generation

Contributors often neglect to write a PR description, the role of the PR titles is significant.

For example, 219,909 PRs (16.4%) do not have descriptions among our collected 1,341,790

PRs. Another common case is that PRs are displayed in a list view by default so that only

the title and other metadata (e.g., author name, tags, and PR ID) are available. Without

a PR description, a high-quality title becomes more important for readers to understand

the intention of a PR. There are other ways to figure out what a PR is about, such as direct

interaction with the PR’s owner or checking the details like commit messages and linked

issues. However, these are certainly inefficient for software maintenance.

In addition, PRs usually have a fast turnaround: they are either processed fast or left open

for a long time without merging to the main branch [67]. In large projects, it is challenging

for integrators to handle a high volume of incoming PRs [69]. Prior research [72] on BRs has

shown that well-written BRs are more likely to gain the triager’s attention and influence

on deciding whether a bug gets fixed. Similarly, the quality of PR, such as the length of

the title and description, significantly impacts PR evaluation latency [176]. Intuitively, PR

titles serve as the first criterion for integrators to decide whether certain PRs are relevant to

122
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their expertise, which can potentially speed up the review process. Nowadays, the quality

of PR descriptions has gained more attention in practice: many Git service providers

support software maintainers to use templates to improve the quality of PR descriptions.1

However, there is no emphasis on helping developers compose high-quality PR titles.

To fill in this gap, we aim for the automatic generation of PR titles to compose accurate and

succinct PR titles. We formulate the automatic PR title generation task as a one-sentence

summarization task. Its goal is to produce a concise and informative target sequence of

tokens (title), which is a summary of the given source sequence of tokens.

As no prior work has been devoted to automatic PR title generation, we comprehensively

evaluated the effectiveness of five state-of-the-art summarization methods on this task,

including both general-purpose and domain-specific summarization methods. Some of

these methods are extractive (i.e., they extract the sentences from the source sequence and

then concatenate them to form the target sequence), while others are abstractive (i.e., they

generate the target sequence with sentences that are different from the original sentences

in the source sequence). For general-purpose summarization methods, we have identified

three approaches: BERTSumExt [106], BART [94], and Text-To-Text Transfer Transformer

(T5) [132]. BERTSumExt [106] is an extractive summarization method that utilizes the pre-

trained bidirectional encoder representations from Transformers (BERT) [55]. BART [94]

and T5 [132] are two large pre-trained Transformer-based architectures, which can be used

for abstractive summarization. For domain-specific summarization methods, we evaluate

two methods, i.e., PRSummarizer [108] originally designed for PR description generation

and iTAPE [46] initially designed for issue title generation. Another related work is by

Liu et al. [103] that proposed a Stack Overflow title generation approach; However, the

underlying model of their method is T5, which is already included in the general-purpose

summarization method.

1GitHub documentation about issue and pull request templates

https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
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Specifically, in the work, we would like to answer two RQs to understand the performance

of different methods on the PR title generation task:

RQ1: In terms of automatic evaluation, how do different methods perform on the PR title generation

task?

RQ2: To what extent can the best-performing approaches automatically generate PR titles as

developers would do?

Due to the lack of a suitable dataset, we construct a dataset named PRTiger (Pull Request

Title Generation), which is the first dataset that can be leveraged for PR title generation.

Our focus is to help contributors compose non-trivial PR titles, which aims to help in-

tegrators grasp the main changes made in the PRs. We identified and applied several

rules to keep the PR titles that suit the use scenario. In the end, we have 43,816 PR titles

belonging to 495 GitHub repositories in PRTiger. The source sequence in the dataset is

the concatenation of the PR description, commit messages, and linked issue title, with an

average length of 114 words. The target sequence is the corresponding PR title, with an

average length of 7 words.

ROUGE metrics [100], the standard metrics for automatic evaluation of summarization

technique effectiveness, are adopted to evaluate model performance. We also conducted

a manual evaluation by inviting three evaluators. For each sample, the evaluators were

asked to score three titles by reading the source sequence. The titles generated by the

automatic methods and the original human-written titles were randomly shuffled. Eval-

uation criteria include correctness, naturalness, and comprehensibility. The results suggest

that BART outperforms the other techniques in automatic and manual evaluation.
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4.1 Benchmarking Dataset Building

As there is no existing dataset for PR title generation, we decided to build the first bench-

mark dataset for this task. In this work, we experimented with GitHub data due to its

popularity. Although Liu et al. [108] shared a dataset for the PR description generation

task, they did not include the titles of PRs in their dataset. In addition, their dataset only

contains engineered Java projects, which may lack diversity. Therefore, a new dataset

containing PR titles gathered from various programming language repositories is needed.

We first collected the data; next, we filtered out PRs which did not belong to the usage

scenario we focused on in this work. Then, we filtered out the content from PRs which do

not help to generate accurate and succinct PR titles.

4.1.1 Data Collection

To collect PR data from GitHub, we first got 7 repository lists: Top-100 most-starred

and Top-100 most-forked repositories (regardless of programming language); Top-100

most-starred repositories that are written primarily in one of the following languages:

JavaScript, Python, Java, C, and C++.2 The number of stars and the number of forks are

two different metrics in GitHub: The number of stars means how many people click on

the repository to show their appreciation. A fork is a copy of a repository and the num-

ber of forks indicates how many people copied this project. The Top-100 most-starred

and most-forked repositories cover a wide range of programming languages, e.g., Shell

(ohmyzsh/ohmyzsh), Go (kubernetes/kubernetes), and TypeScript (microsoft/vscode).

Given the 7 lists have common repositories, after removing redundancies, in total we

crawled 578 distinct repositories. We collected the PRs from each repository using GitHub

2The detailed repository lists are available here: https://github.com/EvanLi/Github-Ranking/blob/

f4cf5694eaed7ad1ee59425d7c0dcf9f3e8511f9/Top100

https://github.com/EvanLi/Github-Ranking/blob/f4cf5694eaed7ad1ee59425d7c0dcf9f3e8511f9/Top100
https://github.com/EvanLi/Github-Ranking/blob/f4cf5694eaed7ad1ee59425d7c0dcf9f3e8511f9/Top100
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Table 4.1: Our trivial PR title patterns, and example PR titles from the collected dataset.

Starts with (lowercased) Example Title
automated cherry pick of Automated cherry pick of #12022 #13148 upstream release

1.0
merge to Merge to live part 2 on 4-27
revert Revert "Add log_only to debug messages"
rolling up Rolling up changes to staging from master
rolling down Rolling down changes from staging to master
roll engine Roll engine dart roll 20180920
rollup of Rollup of 5 pull requests
roll plugins Roll Plugins from 6d8ea78c5da1 to 361567b9189c (4 re-

visions)
update live with current master Update live with current master

GraphQL API.3 For each repository, we only kept the merged PRs published until Decem-

ber 31, 2021. Given a merged PR published before 2022, we retrieved its title, description,

commit messages, and linked issues. In total, we collected 1,341,790 merged PRs from the

578 GitHub repositories.

4.1.2 Data Preprocessing

Selecting PRs. For each PR, to better simulate the scenario when a contributor opens a new

PR, we first removed the commits submitted after the PR was created. Then, following

Liu et al. [108], we filtered out the PRs which have less than two commits or more than

20 commits. As Liu et al. pointed out, we can directly use the commit message as the

PR title if a PR only contains one commit, and a PR with too many commits is usually

used for synchronization purpose instead of being a typical contribution from developers.

We also removed the PRs (1) containing non-ASCII characters; (2) authored by bots. In

addition, we also filtered out the PRs which contain trivial titles, where automatic methods

for generating PR titles are not needed. We mainly identified the following four types of

3https://docs.github.com/en/graphql

https://docs.github.com/en/graphql
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Table 4.2: Data statistics on our collected pull requests

With < 2 or > 20 With non-ASCII Authored With trivial
commits characters by bot titles
1,147,734 16,396 1,642 111,780

PRs Left Total PRs Collected
51,753 1,341,790

trivial titles: (1) Recurrent titles. Table 4.1 shows the templates which occurred prominently

in our collected PRs. If any PR title starts with these patterns, we exclude it. (2) Too short

or too long titles. Following the dataset building rules used by iTAPE [46], we excluded

the titles with less than 5 words or more than 15 words. Similar to Chen et al. [46], we

observe that PR titles having 5-15 words are of reasonably appropriate length to precisely

and succinctly describe key ideas. (3) Titles with limited overlap with the source sequence. If

20% of the words in the title were not present in the source sequence, we considered the

title not to be a good summary of the source sequence and therefore excluded it from the

dataset. (4) Titles were copied from the source sequence. We first lowercased both the title and

the source sequence. If the title can be exactly matched to the description or concatenation

of the commit messages, we removed the PR from the dataset as we consider this PR as a

bad example to train the model.

After selecting PRs based on the above criteria, we have 51,753 PRs left in the dataset.

Table 4.2 shows the statistics of our collected PRs.

Cleaning the selected PRs. We followed iTAPE [46] to remove tags in the PR titles. We

also followed PRSummarizer [108] to (1) remove checklists in the source sequence; and

(2) remove identifiers in both source and target sequence. We also added extra steps: (1)

Removing PR templates in the source sequence. We first queried through the GitHub API

to find out whether a repository provided a PR template for contributors to compose a PR

description. If there was a PR template, we saved the template string. In our dataset, 214

out of 495 repositories provided a PR template at the time we called the GitHub API. To
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Table 4.3: Data statistics on different splits

Train Validation Test

Source Target Source Target Source Target

Instance # 35,052 35,052 4,382 4,382 4,382 4,382

Avg Word # 114 7 114 7 112 7

remove the template information from each PR, we first split the PR description into lines.

Then, for each line in the source sequence, if it can be matched exactly to the template

string, we removed it. Otherwise, we kept the lines. By doing this, we reduced the noise

in the source sequence. (2) Removing automatically generated commit messages in the

source sequence. We observed that many commit messages only convey the merge branch

information, e.g., Merge branch ‘master’ into tst-indexing-16. We used the following four

regular expressions to remove the automatically generated commit messages: (1) merge

.*? branch .*? into (2) merge branch .*? into (3) merge pull request \# and

(4) merge branch \'.

After applying the pre-processing steps to our data, we further excluded PRs which have

less than 30 words or more than 1,000 words. In the end, we have a dataset PRTiger

consisting of 43,816 PRs for experiments. We split PRTiger into training, validation, and

test sets with a ratio of 8:1:1. Table 4.3 shows the number of instances and the average

word count in the train, validation, and test set, respectively.

4.2 Summarization Methods

In this section, we elaborate on the summarization methods evaluated in this work. Sum-

marization methods can be broadly categorized into two groups, i.e., extractive methods

and abstractive methods [24]. An extractive summarization method extracts sentences from
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the source sequence and then concatenates them to form the target sequence. In contrast,

an abstractive summarization method represents the source sequence in an intermediate

representation. It then generates the target sequence with sentences that are different from

the original sentences in the source sequence [56]. We experimented with state-of-the-art

extractive and abstractive methods. Their details can be found as follows:

4.2.1 Extractive Methods

We experimented with two extractive summarization methods, i.e., oracle extraction and

BertSumExt [106].

Oracle Extraction: This is not a real approach. Instead, it can be viewed as an upper bound

of extractive summarization methods or serve as a measure to gauge the capability of other

extractive summarization methods. Oracle extraction scores have been commonly used in

summarization literature for comparison purposes [41, 178]. It may have different variants

depending on the specific task setting. In our work, oracle extraction selects the sentence

from the source sequence that generates the highest ROUGE-2 F1-score compared to the

original title. We first split the PR description, commit messages, and issue titles into

sentences. Next, we computed the ROUGE-2 F1-score of each sentence with the original

PR title. We selected the sentence with the highest ROUGE-2 F1-score as the generated title

by this method. Since oracle extraction needs the original title as a reference, it cannot be

applied in practice. However, it can be used for comparison to understand other extractive

methods’ performance.

BertSumExt [106]: BertSumExt is built on top of BERT-based encoder by stacking several

inter-sentence Transformer layers. Specifically, for each sentence in the source sequence,

BertSumExt represents each sentence with the vector of the i-th [CLS] symbol from the

top layer. Then, several inter-sentence Transformer layers are then stacked on top of BERT
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outputs, to capture document-level features for extracting sentences as the summary.

BertSumExt achieves better results with less requirement on the model, compared to

other models that enhance the summarization via the copy mechanism [70], reinforcement

learning [127], and multiple communicating encoders [44]. Identical to what we did in

oracle extraction, we also split PR description, commit messages, and issue titles into

sentences. BertSumExt will then give a score to each sentence based on the suitability of

becoming a summary. BertSumExt was initially evaluated on three single-document news

summarization datasets, which could be summarized in a few sentences. In the original

implementation, BertSumExt chooses the sentences with the Top-3 highest scores as a

summary. As the PR title generation task was formulated as a one-sentence summarization

task, we take the Top-1 sentence as the generated PR title.

4.2.2 Abstractive Methods

The two most similar works are identified, i.e., PRSummarizer [108] and iTAPE [46]. As

they did not directly choose the sentence from the source sequence, we also categorized

them into abstractive methods. Besides, we applied BART [94] and T5 [132], which are

state-of-the-art method for text summarization. (we put the exact model version of the

Hugging Face transformers library that we use 4 in parentheses):

PRSummarizer [108]: This text summarization model was designed to automatically gen-

erate PR descriptions from the commits submitted with the corresponding PRs, which is

a sequence-to-sequence (Seq2seq) learning task. The underlying model of PRSummarizer

is the attentional encoder-decoder model [29]. Besides, PRSummarizer can handle two

unique challenges, i.e., out-of-vocabulary (OOV) words and the gap between the training

loss function of Seq2seq models and the discrete evaluation metric ROUGE. Especially,

4https://huggingface.co/models

https://huggingface.co/models
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PRSummarizer copes with OOV words by integrating the pointer generator [147]. The

pointer generator either selects a token from the fixed vocabulary or it will copy one token

from the source sequence at each decoding step. To minimize the gap between the loss

function and the ROUGE metrics, PRSummarizer also leverages a reinforcement learning

(RL) technique named self-critical sequence training [135] and adopts a particular loss

function named RL loss [127].

iTAPE [46]: iTAPE uses a Seq2seq-based model to generate the issue title using the issue

body. Specifically, iTAPE adopts the attentional RNN encoder-decoder model. In addition,

to help the model process the low-frequency human-named tokens effectively, iTAPE first

inserts additional “tag tokens” before and after each human-named token, i.e., identifiers

and version numbers. These tag tokens are added to the issue body to indicate their latent

semantic meanings. Furthermore, iTAPE adopts a copy mechanism [70], which allows

the model to copy tokens from the input sequence. The underlying architecture is the

pointer-generator [147], a commonly used abstractive summarization approach before the

dominant usage of pre-trained models.

BART [94] (facebook/bart-base): is a Seq2seq autoencoder based on a standard Trans-

former [163] architecture. The pre-training process of BART consists of two stages: (1)

corrupt the input text by using an arbitrary noising function and (2) a Seq2seq model is

learned to reconstruct the original text by minimizing the cross-entropy loss between the

decoder output and the original sequence. A number of noising approaches are evaluated

in the BART paper. The best performance is achieved by adopting both the noising meth-

ods, i.e., (1) randomly shuffling the order of the original sentences, and (2) applying an

in-filling scheme, where a single mask token is used to replace arbitrary length spans of

text (including zero length). BART was pre-trained with the same data as RoBERTa [107],

i.e., 160GB of news, books, stories, and web text. BART achieves new state-of-the-art re-

sults on several text generation tasks, including abstractive dialogue, question answering,



CHAPTER 4. PULL REQUEST TITLE GENERATION 132

and summarization tasks.

T5 [132] (t5-small): T5 is a pre-trained language model which aims to convert all NLP

tasks into a unified text-to-text-format where the input and output are always text strings.

The advantage of this T5 text-to-text framework is that we can use the same model, loss

function, and hyper-parameters on any NLP task. T5 is also based on the Transformer ar-

chitecture. Similar to BART, T5 was pre-trained on a masked language modeling objective:

contiguous spans of token in the input sequence are replaced with a mask token and the

model is trained to reconstruct the masked-out tokens. Unlike BART, T5 was pre-trained

with the Colossal Clean Crawled Corpus (C4) dataset, which consists of 750GB of English

text from the public Common Crawl web scrape. T5 was reported to achieve state-of-the-

art results on many benchmarks including summarization, question answering, and text

classification.

4.3 Study Design

This section describes the relevant design and settings of our study. We list two research

questions and the evaluation metrics, and briefly describe the implementation details.

4.3.1 Research Questions

We would like to empirically evaluate the performance of different approaches on the

automatic PR title generation task. The study aims to answer the following RQs:

RQ1: In terms of automatic evaluation, how do different methods perform on the PR title gen-

eration task? Although there is no prior work on automatically generating PR titles, we

choose the approaches from the two closest works [108, 46] as the baselines. We used the
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implementations of these two approaches in our task. For comparison, we also evaluated

the state-of-the-art general-purpose extractive and abstractive summarization techniques.

RQ2: To what extent can the best-performing approaches automatically generate PR titles as

developers would do? Other than providing the results on automatic evaluation, we also

conducted a manual evaluation. Given the expense of running a manual evaluation, we

only evaluated the two best-performing methods on the automatic evaluation. We invited

three annotators who are not an author of this work.

4.3.2 Evaluation Metrics

Automatic Evaluation Following the prior works [108, 46], we use Recall-Oriented Un-

derstudy for Gisting Evaluation (ROUGE) [100] to measure the quality of generated sum-

maries for the summarization task. ROUGE-N measures the overlap of n-grams [100]

between the model-generated summary and the reference summary. The formulas to

calculate ROUGE-N can be shown as follows:

𝑅𝑅𝑂𝑈𝐺𝐸−𝑁 =
𝐶𝑜𝑢𝑛𝑡(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑_𝑁_𝑔𝑟𝑎𝑚𝑠)

𝐶𝑜𝑢𝑛𝑡(𝑁_𝑔𝑟𝑎𝑚𝑠_𝑖𝑛_𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑢𝑚𝑚𝑎𝑟𝑦)

𝑃𝑅𝑂𝑈𝐺𝐸−𝑁 =
𝐶𝑜𝑢𝑛𝑡(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑_𝑁_𝑔𝑟𝑎𝑚𝑠)

𝐶𝑜𝑢𝑛𝑡(𝑁_𝑔𝑟𝑎𝑚𝑠_𝑖𝑛_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑_𝑠𝑢𝑚𝑚𝑎𝑟𝑦)

𝐹1𝑅𝑂𝑈𝐺𝐸−𝑁 = 2 × 𝑅𝑅𝑂𝑈𝐺𝐸−𝑁 × 𝑃𝑅𝑂𝑈𝐺𝐸−𝑁
𝑅𝑅𝑂𝑈𝐺𝐸−𝑁 + 𝑃𝑅𝑂𝑈𝐺𝐸−𝑁

As the variable names suggest, R (recall) measures the percentage of the N-grams in the

reference summary that the generated summary has covered, and P (precision) presents

the percentage of N-grams in the generated summary that is, in fact, relevant or needed.

F1-score of the ROUGE scores is used to represent and give an equal importance between

recall and precision. In this task, we report the precision, recall, and F1-score of ROUGE-N
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Table 4.4: An example PR with the original title and the titles generated by BART and T5.
https://github.com/grpc/grpc/pull/1655

Source <desc> this fixes #1551. servers now respond to unparseable argu-
ments with the invalid_argument status and the text of the deserial-
ization error, instead of crashing. </desc> <cmt> added failing tests
for server bad argument handling </cmt> <cmt> fixed server to han-
dle invalid arguments without breaking </cmt> <iss> node rpc server
cannot recover from malformed requests </iss>

Original Title handle invalid arguments sent to the node server
BART fix server bad argument handling
T5 fix server to handle invalid arguments without breaking node

(N=1,2) and ROUGE-L from each method. ROUGE-1, ROUGE-2, and ROUGE-L are com-

monly used in the literature to understand the summary quality [108, 46]. ROUGE-1 and

ROUGE-2 measure the overlap of uni-grams (1-grams) and bi-grams (2-grams), respec-

tively. A uni-gram consists of a single word, while a bi-gram consists of two consecutive

words. Instead of n-grams, ROUGE-L measures the longest common subsequence be-

tween the reference summary and the generated summary. We treat F1-score of ROUGE

as the main summarization performance measure. We first get the generated summaries

from each approach. For the ROUGE scores calculation, we adopt the metric implemented

in Hugging Face datasets library [95].

Manual Evaluation In addition to automatic evaluation, we also conducted a manual

evaluation to understand better and evaluate the quality of titles generated by different

approaches. Since ROUGE scores are calculated based on the overlap of n-grams, the

generated summaries may be semantically incorrect, even with very high ROUGE scores.

This is due to the ROUGE scores limitation which only measures the lexical similarity

between two sentences. Hence, it cannot gauge the comprehensibility of the summaries

generated by the model. [162] Thus, we sampled 150 PRs from the test set. With this

sample size, we can maintain a confidence level of 92% with an 8% margin of error. Three

evaluators were invited to give the quality scores to the PR titles generated by the two best
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approaches and the original titles written by developers. All evaluators have more than

6-year experience in programming and more than 5-year experience using GitHub. They

have a basic understanding of how pull-based software development works (i.e., they are

experienced in making changes, pushing commits, writing issue reports, and opening

PRs).

The techniques used to generate titles are hidden from the evaluators; they cannot judge

based on the bias of knowing the authorship. For each sample, evaluators were provided

with the source sequence along with three titles: two of the titles are generated by the

two best-performing approaches, i.e., BART and T5, and the rest is the original title.

We randomly shuffled the order of the three titles. To help the evaluators read the

source sequence clearly, we use <desc></desc>, <cmt></cmt>, and <iss></iss> to enclose

description, commit messages, and linked issue titles, respectively. One sample source

sequence can be seen in Table 4.4. Evaluators were required to read through the source

sequence and the three titles. They were asked to score the three titles (1 - very poor; 5 -

very good) with regards to the following aspects:

• Correctness: To which extent, do you think the title correctly summarize the source

sequence?

• Naturalness: To which extent, do you think the title is resembling a human-written

title?

• Comprehensibility: To which extent, do you think the title is easy to understand?

Additionally, they were also required to rank the three titles. Their personal preference

for these titles is not necessarily based on the three criteria listed above. If the titles are the

same, they can rank two titles with the same rank. Otherwise, they must give different

ranks for each title.
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Table 4.5: Automatic evaluation Results on the test dataset

Approach Avg. ROUGE-1 ROUGE-2 ROUGE-L

Length P R F1 P R F1 P R F1

Extractive
– Oracle Extraction 13 47.61 55.74 46.97 32.51 34.04 30.25 44.88 51.33 43.91
– BertSumExt 13 36.18 44.95 37.64 18.18 21.71 18.48 32.76 40.28 33.94

Abstractive
– PRSummarizer 6 41.4 36.68 37.91 20.06 17.26 17.99 38.22 33.83 34.98
– iTAPE 8 31.63 34.62 32.23 12.67 13.98 12.91 28.71 31.51 29.31
– BART 7 50.03 46.98 47.22 27.15 24.96 25.27 45.71 42.85 43.12
– T5 7 44.88 42.15 42.06 23.22 21.3 21.39 41.09 38.49 38.46

4.3.3 Implementation Details

We run all the experiments with NVIDIA Tesla V100 GPUs. For iTAPE, we preprocessed

the identifier and version numbers with the scripts provided by the authors.5 For PRSum-

marizer, we changed the vocabulary size from 50k to 200k to handle the OOV issue. Given

BART (BART-base, which contains 140 millon parameters6) has more parameters than T5

(T5-small, which contains 60 million parameters7), we run BART with the batch size of 4;

while 8 for T5. All the remaining hyper-parameters were left as the default values. The

detailed default values can be found in our replication package.8
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Table 4.6: Performance comparison with other summarization tasks: issue title gener-
ation (Chen et al. [13]), PR description generation (Liu et al. [12]), and lay language
summarization of biomedical scientific reviews (Guo et al. [30])

Method ROUGE-1 ROUGE-2 ROUGE-L
F1 F1 F1

BART in our work 47.22 25.27 43.12
Chen et al. [46] 31.36 13.12 27.79
Liu et al. [108] 34.15 22.38 32.41
Guo et al. [73] 53.02 22.06 50.24

4.4 Study Results

4.4.1 RQ1: Comparison on Automatic Evaluation

To investigate how different approaches perform on the PRTiger dataset, we firstly analyze

model performance with ROUGE metrics. Table 4.5 shows the ROUGE scores from the

six approaches.

Firstly, looking at the length of generated titles, we can observe that the extractive ap-

proaches produce longer titles than the abstractive approaches. The average length of the

titles generated by extractive approaches highly relies on the length of sentences selected

from the dataset. Although we set the extractive approaches to select a single sentence

as a title, they select longer titles. All the abstractive methods generate titles with an

average length of 6-8 words. The length range is similar to the average length across all

the data splits (See Table 4.3). It indicates that abstractive methods generate titles with an

appropriate length, as it is capable of generating titles with an average length similar to

5https://github.com/imcsq/iTAPE

6https://github.com/pytorch/fairseq/blob/main/examples/bart/README.md#

pre-trained-models

7https://github.com/google-research/text-to-text-transfer-transformer#

released-model-checkpoints

8https://github.com/soarsmu/PRTiger

https://github.com/imcsq/iTAPE
https://github.com/pytorch/fairseq/blob/main/examples/bart/README.md#pre-trained-models
https://github.com/pytorch/fairseq/blob/main/examples/bart/README.md#pre-trained-models
https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
https://github.com/soarsmu/PRTiger
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the average length of the original titles.

Serving as the upper bound of extractive summarization approaches, Oracle Extraction

gives the highest ROUGE-1, ROUGE-2, and ROUGE-L F1-scores since it relies on the

original title. In comparison, BertSumExt gave ROUGE-1, ROUGE-2, and ROUGE-L F1-

score of 37.64, 18.48, and 33.94. These scores were 20%, 38.9%, and 22.7% lower than the

Oracle Extraction. It suggests that, in practice, PR titles have a considerable amount of

overlap with the source sequence. Yet, BertSumExt is not capable of selecting the correct

sentence every time.

Among the four abstractive approaches, BART and T5 achieved better performance than

the two other abstractive approaches. It demonstrates the power of pre-training in the

PR title generation. BART and T5 were both pre-trained with large general-purpose cor-

pora. Unlike these two approaches, PRSummarizer and iTAPE were trained solely on the

PRTiger data, where PRSummarizer produces a better performance than iTAPE. Consid-

ering PRSummarizer was originally proposed for PR description generation, the data they

used to evaluate their approach has similar characteristics as PRTiger. In addition, both

PRSummarizer and iTAPE adopt the pointer generator [147]. It suggests the importance

of RL-loss in PRSummarizer, which is used to minimize the gap between the loss function

and the ROUGE metrics.

Comparing extractive and abstractive methods, BART shows an on-par performance as

the Oracle Extraction, which indicates that BART is capable of capturing key points from

the source sequence and generating precise PR titles. BART outperforms the second-

best approach T5 by 12.2%, 18.1%, and 12.1%, in terms of ROUGE-1, ROUGE-2, and

ROUGE-L F1-scores, respectively. Although T5 gives worse performance than BART,

it still outperforms the other approaches, i.e., PRSummarizer, by 10.9%, 18.9%, and 10%

with regards to ROUGE-1, ROUGE-2, and ROUGE-L F1-scores, respectively. Interestingly,

BertSumExt gives an on-par performance as PRSummarizer and it outperforms iTAPE.
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Given the words in the PR, titles are not necessarily contained in the source sequence, the

PR title generation task is naturally an abstractive summarization task. However, as an

extractive approach, BertSumExt shows relatively good performance. It indicates that, in

practice, developers may draft titles based on existing sentences, either in PR description

or commit messages.

Other than comparing different approaches on the automatic PR title generation task

solely, we show the ROUGE F1-scores from other related tasks. Chen et al. [46] work

on the issue title generation task, where the proposed approach is named iTAPE and is

evaluated in our work. Liu et al. [108] work on the PR description generation task, where

the proposed approach is named PRSummarizer and is evaluated in our work as well.

Guo et al. [73] work on automated generation of lay language summaries of biomedical

scientific reviews. The ROUGE F1-scores from the best performing method of these three

tasks are present in Table 4.6. According to the result, we can find that BART in our work

achieves a comparable level of performance on the automatic PR title generation task.

Automatic Evaluation The fine-tuned BART and T5 outperform all the other approaches.

BertSumExt is on par with the two existing approaches (PRSummarizier and iTAPE).

The best-performing approach, BART, outperforms the second-best approach by 12.2%,

18.1%, and 12.1%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L F1-scores.

4.4.2 RQ2: Comparison on Manual Evaluation

Figure 4.1 shows the average scores regarding three aspects from the three evaluators.

BART is better than T5 in the three aspects, which is in line with the automatic evaluation

results with ROUGE metrics. Surprisingly, we can see that BART and T5 show higher

scores than the original titles in all three perspectives. It indicates that the titles gener-

ated by automatic methods are more acknowledged than the titles written by PR authors.
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Figure 4.1: Average scores from three evaluators

Across the three aspects, we can find that all three approaches receive the lowest average

scores of correctness. They achieve slightly higher average scores regarding comprehensibil-

ity than naturalness. These results show that although PR titles read like humans wrote

them and are easy to understand, they may not be correct enough from the evaluators’

perspectives.

Figure 4.2 shows that for each rank, the percentage of different approaches. Although the

ranking is a relative order, it is allowed to be subjective and solely based on the evaluators’

personal preference. For the best ones, we can find that BART has been listed as the best

one the most times. T5 comes the second. Again, surprisingly, the original title is less

preferred.

While a larger-scale study is required, our work provides preliminary evidence that au-

tomatically generated PR titles are readable and comprehensible to PR readers, i.e., have

higher scores in terms of correctness, naturalness, and comprehensibility. In the sampled

PR titles, automatically generated PR titles are preferred over the original titles in most

cases.
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Figure 4.2: Rank occurrences for the original titles and the titles generated by BART and
T5.

Manual Evaluation The PR titles generated by BART gained the highest scores on cor-

rectness, naturalness, and comprehensibility. T5 performs the second. They are both

preferred more than the original titles.

4.5 Discussion

4.5.1 Qualitative Analysis

Composing PR titles is a non-trivial task, as it requires both summarization ability and

domain knowledge. Moreover, PR titles are generally short. Here, we would like to seek

a qualitative understanding of the performance difference between different approaches.

Automatic Evaluation. In Table 4.7, we showcase one example of titles produced by

each approach and the original title along with the source sequence. Note the source

sequence is the cleaned version used for the models to generate titles. We use boldface

to highlight the common part between the text and the original title. All the approaches
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Table 4.7: An example PR with the original title and the generated titles from five ap-
proaches: https://github.com/iluwatar/java-design-patterns/pull/1066

Source Sequence reduces checkstyle errors for patterns: api-gateway lazy-loading
leader-election changes involved java docs reordering imports in-
dentations line length issues reduces checkstyle errors in lazy-
loading reduces checkstyle errors in leader-election reduces
checkstyle errors in api-gateway

Original Title resolves checkstyle errors for api-gateway, lazy-loading, leader-
election

BART resolves checkstyle errors for api-gateway lazy-loading leader-
election

T5 reduces checkstyle errors for patterns
BertSumExt reduces checkstyle errors for patterns : api - gateway lazy - loading

leader - election changes involved java docs reordering imports
indentations line length issues

PRSummarizer reduces checkstyle errors for patterns: api-gateway
iTAPE resolves checkstyle errors for patterns : api-gateway lazy-loading

can correctly generate checkstyle errors for, which occurs several times in the source

sequence. However, all the approaches except BART generate the first word as reduces,

and they also generate pattern. It is natural, as the first sentence in the source se-

quence contains reduces and pattern as well. It is interesting to see that BART does

not directly take the first sentence. Besides, the body does not even have the word

resolve. We checked the dataset and found that several PR titles in the same repository

(iluwater/java-design-pattern) followed the same name style: resolves checkstyle

errors for. The following text differs among PRs. From this example, we can find that

BART can learn this title style instead of simply choosing the first sentence. BART does

not only use exactly the same words from the source sequence. Instead, it could correctly

generate the words which are not present in the source sequence. It shows BART has the

promising ability to be adopted in the automatic PR title generation task.

Manual Evaluation. In Table 4.4, we show an example from our sampled 150 PRs. All

the evaluators indicate their preference among the three titles as: BART > T5 > Original.

Firstly, this PR contains description, two commit messages and linked issue. The original
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title uses handle, which only appears in one of the commit messages. Besides, the phrase

sent to does not exist in the source sequence. In comparison, the generated title from

BART and T5 used fix, which occur twice in the source sequence and all the words in the

generated titles are present in the source sequence. The title generated by BART is shorter

and summarizes the source sequence well, while the title generated by T5 is longer and

covers more words from the source sequence.

We investigated PR titles with high comprehensibility scores (i.e., all evaluators gave a

score of >=4 for comprehensibility). We found that a PR title is considered to be more

comprehensible when: (1) It covers multiple sources of information, e.g., sentences in the

PR description and commit messages. (2) It explicitly states that it fixes an issue or adds

a feature (e.g., usually starts with the word "fixed" or "added"). We also investigated PR

titles with low comprehensibility scores (i.e., all evaluators gave a score <=3 for compre-

hensibility). We found that a PR title is considered to be less comprehensible when: (1)

the PR contains many commits but the PR title only takes information from a few commit

messages. (2) The PR title has little connection with the PR description.

4.5.2 Threats to Validity

Threats to internal validity relate to the experimental bias. Following the prior works

in summarization studies [108, 46], we adopted both automatic evaluation (i.e., ROUGE

metrics) and manual evaluation. Like other manual-involved evaluations, our experimen-

tal results may be biased or inconsistent. To mitigate this issue, we recruited 3 evaluators

with 6+ years of computer programming and 5+ years of experience in using GitHub.

They are familiar with the issue and code review mechanism in GitHub.

Moreover, during the dataset building process, although we have performed the selection

heuristics, the remaining PR titles that we use as ground truth for automatic evaluation
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may not be the ideal ones. We use them as proxies of the ideal reference titles for scalability

reasons. There are a total of 43,816 titles in our experimental dataset and crafting the best

possible reference titles for all of them manually is not practically feasible. We address this

limitation of the automatic evaluation by manual evaluation; each has its own limitations:

automatic (quality of reference titles) vs. manual (limited number of titles are considered).

Threats to external validity relate to whether our findings can be generalized to other

datasets. To alleviate the external threats, we consider repositories from different program-

ming languages diverse. We also considered two metrics in GitHub: Top-100 most-starred

and Top-100 most-forked repositories. Although we only included the repositories from

GitHub, we do not identify a large difference between repositories from GitHub and those

from other git service providers [34]. Therefore, we consider the external threat to be

minimal.

4.6 Summary

In this work, we propose the task of automatically generating PR titles. To facilitate the

research on this task, we constructed a dataset named PRTiger, which consists of 43,816 PRs

from 495 GitHub repositories. We conducted both automatic and manual evaluations on

the state-of-the-art summarization approaches for the automatic PR title generation task.

The experimental results indicate that BART is the most capable technique for generating

satisfactory PR titles with ROUGE-1, ROUGE-2, and ROUGE-L F1-scores of 47.22, 25.27,

and 43.12, respectively. The manual evaluation also shows that the titles generated by

BART are preferred.

We believe that our work opens up many interesting research opportunities. To name a

few, one possible research direction is to consider the characteristics of PR data to propose
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a domain-specific pre-trained model. Domain-specific models are promising, such as

BERTweet [119], which is pre-trained on English tweets, outperforms the strong baseline

RoBERTabase [107] on three Tweet NLP tasks. Additionally, to further improve the PR title

generation performance, another direction is to leverage the hierarchical code structure

information from code changes.



Chapter 5

Related Works

This chapter covers the work which is most relevant to the dissertation.

5.1 Boosting SA4SE Accuracy

Previous research has shown that emotions influence work outcomes and dynamics, such

as task quality, productivity, creativity, group rapport, user focus, and job satisfaction (c.f.

[52, 124]). On the other side of the coin, work processes and outcomes influence developer

emotions (c.f. [140]). Much research has investigated aspects of this two-way relationship

between developers’ work and their emotions.

One line of work that has attracted much research interest is the SA of software artifacts,

such as BRs and commit comments. For example, Guzman et al. [74] studied sentiments in

commit comments in GitHub to analyze the social factors affecting software development.

Villarroel et al. [164] mined emotional information from mobile APP reviews to support the

release planning activity. To further analyze the impact of negative code review comments,

Ahmed et al. [22] developed a code-review specific SA tool. Fine-grained emotions have
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also been studied. Gachechiladze et al. [61] focus on the automatic identification of anger

direction (anger towards self, others, and objects) in a collaborative software development

environment. They found that all of the anger directions are present within the comments

from Apache issue reports [61].

The progress of SA research in SE has promoted the development of corresponding tools.

In the past decades, many techniques have been proposed to improve the effectiveness

of identifying sentiments or emotions in the SE domain [47, 48, 82, 76, 22, 42, 43, 77,

118, 81, 35]. Chen et al. [47] propose SEntiMoji, an emoji-powered learning approach

for SA in SE. They employ emotional emojis as noisy labels of sentiments and propose

a representation-learning approach that uses both Tweets and GitHub posts containing

emojis to learn sentiment-aware representations for SE-related texts. In the evaluation,

they compare SEntiMoji with four SA4SE tools on sentiment polarity benchmark datasets.

The experimental results show that SEntiMoji can significantly improve the performance.

Furthermore, Chen et al. [48] include an additional evaluation of SEntiMoji on the emotion

detection task. They also compared it with four existing emotion detection methods,

including DEVA [81], EmoTxt [43], MarValous [77], and ESEM-E [118]. The experimental

results on the five benchmark datasets covering 10,096 samples for sentiment detection

and four benchmark datasets covering 10,595 samples for emotion detection demonstrate

that SEntiMoji is effective.

Besides developing a new SA4SE tool, some research aimed at improving SA accuracy by

handling existing challenges, such as labeled data scarcity. Imran et al. [76] address the

data scarcity problem by automatically creating new training data using a data augmen-

tation technique. They specifically target the data augmentation strategy to improve the

performance of emotion recognition by analyzing the types of errors made by popular

SE-specific emotion recognition tools. Their results show that when trained with their best

augmentation strategy, three existing emotion classification tools, i.e., ESEM-E, EMTk, and
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SEntiMoji, received an average improvement of 9.3% in micro-F1 score.

5.2 Empirical Studies in SA4SE

With the proliferation of domain-specific SA4SE tools, a series of empirical investiga-

tions have been conducted to illuminate our understanding of this field’s progress and

challenges [99, 123, 85, 125, 86, 122, 98].

By comparing the performance of general-purpose SA tools in the SE field, Jongeling et

al. [85] found that these tools produced inconsistent annotated labels, and they may not

necessarily agree with each other. Therefore, they claim a need for SE domain-orientated

SA tools. Due to the non-optimal performances of these off-the-shelf SA tools built from

the general text, more SE domain-specific SA tools have been introduced.

Novielli et al., in their recent study [122], delve into the critical question of how off-the-

shelf, SE-specific SA tools affect the conclusion validity of empirical studies in SE. They

begin by replicating two prior studies that explore the role of sentiment in security dis-

cussions on GitHub and question-writing on Stack Overflow. Subsequently, they extend

these studies by assessing the level of agreement between different SA tools and manual

annotations, using a gold standard dataset comprising 600 documents. The experimental

findings from this research reveal that when applied out-of-the-box, various SA4SE tools

may yield conflicting results at a granular level. Consequently, it becomes imperative to

consider platform-specific fine-tuning or retraining to account for differences in platform

conventions, jargon, or document lengths.

Obaidi et al. [125] conducted a systematic mapping study to comprehensively examine SA

tools developed for or applied in the SE domain. This study summarizes insights drawn

from 106 papers published up to December 2020, focusing on six key aspects: (1) the
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application domain, (2) the purpose of SA, (3) the datasets used, (4) the approaches for

developing SA tools, (5) the utilization of pre-existing tools, and (6) the challenges faced

by researchers. Based on their findings, neural networks emerge as the top-performing

approach, with BERT identified as the most effective tool.

Beyond the scope of sentiment classification, some researchers have explored broader

facets of SA4SE, such as opinion mining. Opinion mining encompasses a wider spectrum

of tasks than the sentiment polarity identification typically evaluated in SA4SE studies. It

includes SA, subjectivity detection, opinion identification, and joint topic SA. In a compre-

hensive systematic literature review, Lin et al. (2022) investigated 185 papers on opinion

mining in SE [98], shedding light on the diverse research efforts in this area.

Each of these existing empirical studies has contributed valuable insights into the evolving

landscape of SA4SE. Notably, our work stands apart from these studies as it introduces

the use of bLLMs to this domain for the first time.

5.3 DBRD Techniques and Practitioners’ Perception

Many studies have developed DBRD techniques in the past decade. The state-of-the-art

approaches and popular ones have been described in Section 3.1.1. Here, we introduce

three classic works and a recent study assessing practitioners’ perceptions of DBRD.

One of the pioneer studies in DBRD is by Runeson et al. [142]. They extracted textual

fields in a BR (summary and description), and converted a BR into a vector of weights

following the standard Vector Space Model (VSM) [146]. Duplicates are then identified by

comparing the vector representation of an incoming BR to those of existing ones wrt. three

well-known similarity metrics: Cosine, Jaccard, and Dice [146]. Wang et al. [165] extended

Runeson et al.’s work by considering both natural language text and execution information
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(e.g., stack traces). They have shown that the consideration of execution information is

beneficial but not many BRs contain such execution information. Sun et al. [153] trained a

discriminative model via Support Vector Machine (SVM) to classify whether two BRs are

duplicates of one other with a probability. Based on this probability score, they retrieve

and rank candidate duplicate BRs.

Zou et al. [195] surveyed 327 practitioners from diverse backgrounds to investigate practi-

tioners’ perceptions of DBRD and other automated techniques supporting ITS. They find

that DBRD is among the top-3 techniques deemed to be the most valued and find that

respondents appreciate these techniques as they can save developers’ time, save reporters’

time, provide hints for bug fixing, etc.

5.4 Evaluation of DBRD Techniques

There are several studies on evaluating DBRD techniques [133, 160]. Rakha et al. [133]

studied the differences between duplicate BRs before and after the introduction of JIT

duplicate BR recommendation (JIT feature) in Bugzilla (in 2011). They found that duplicate

BRs after 2011 (2012–2015) are less textually similar, have a greater identification delay, and

require more discussion to be retrieved as BRs than duplicates before 2011. Their study

also demonstrates that when evaluating the data after 2011, the experimental results of

prior research would vary. These findings motivated us to experiment on BRs submitted

after 2011. Based on their findings, we built the old and recent data both after 2011. Our

work differs from their work as we investigate the two 3-year time window data after the

JIT feature. We investigate not the impact of JIT DBRD feature introduction in Bugzilla,

but rather age bias.

Tu et al. [160] also highlighted the fact that the BR attributes, i.e., field values, change
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over time. They raise a concern that several DBRD techniques use data from the future

while training their models. Their study can be seen dealing with our state bias. They

just investigate REP [152]’s accuracy from BRs on Bugzilla ITS of Mozilla and Eclipse.

In this work, we investigated diverse factors that could affect the performance of DBRD

techniques, and not only the state bias. Furthermore, we run a statistical test on the

accuracy difference between using the initial state and the latest state and show that state

bias does not have a statistically significant impact.

5.5 Understanding Pull Requests

Pull-based software development has attracted more and more interest in research. Some

works focus on empirically understanding PRs. Gousios et al. conducted two surveys to

analyze the work practices and challenges in pull-based development from the integra-

tor’s [69] and contributor’s [68] perspectives, respectively. In the first piece of work, they

found that integrators successfully use PRs to solicit external contributions. Integrators

concerned with two major factors in their daily work, i.e., (1) quality: both at the source

code level and tests (2) prioritization: typically, they need to manage a large number of

contribution requests at the same time. In the latter one, they performed an exploratory

investigation of contributors to projects hosted on GitHub. Their findings include but are

not limited to, the fact that contributors are very interested in knowing project status for

inspiration and to avoid duplicating work, but they are not actively trying to publicize the

PRs they are preparing.

Other works are interested in solving PR-related tasks. Yu et at. [177] studied the re-

viewer recommendation for PRs to improve the PR evaluation process. They found that

traditional approaches (e.g., SVM-based) for bug triage are also feasible for PR reviewer

recommendations. They also found that combining the social factors (e.g., common in-
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terests among developers) and technical factors (e.g., developer’s expertise) is efficient

in recommending reviewers. Jiang et al. [84] studied the tag recommendation for PRs.

They proposed FNNRec, which uses a feed-forward neural network to analyze titles, de-

scriptions, file paths, and contributors to help developers choose tags. These prior works

motivate our work to automatically generate high-quality PR titles to benefit both devel-

opers and reviewers. Besides, good PR titles can also be helpful for downstream tasks

that utilize PR titles.

5.6 Automatic Software Artifact Generation

Automatic software artifact generation has gained emerging interest in SE research. Ex-

isting works range from automatically generating release notes [117], BRs [96], to commit

messages [173]. Moreno et al. [117] introduced an automatic approach to generate release

notes. The proposed approach extracts changes from the source code, summarizes them,

and integrates the summary of changes with information from versioning systems and

issue trackers. Li et al. [96] proposed an unsupervised approach for BR summarization.

The approach leverages an auto-encoder network with evaluation enhancement and pre-

defined field enhancement modules. Xu et al. [173] proposed CODISUM to address the

two limitations of the prior commit message generation task, i.e., ignoring the code struc-

ture information and suffering from the OOV issue. Specifically, to better learn the code

change representations, they first extract both code structure and code semantics from the

source code changes and then jointly model these two information sources. Moreover,

they adopted a copy mechanism to mitigate the OOV issue. We also mention iTAPE, an

issue title generation approach in Section 4.2. Our work and these works are complemen-

tary. We all aim to promote automatic generation in SE, while concentrating on different

aspects.



CHAPTER 5. RELATED WORKS 153

5.7 sLLMs for SE

Given the success witnessed in many NLP tasks, researchers in the SE field have started

to utilize sLLMs to solve many SE-related tasks as well. There are generally two lines of

research on sLLMs for SE. The first focuses on pre-training large-scale domain-specific

models in the SE field [88, 71, 58]. One example is BERTOverflow [154], which was

BERTbase pre-trained on Stack Overflow 10-year archive of 152 million sentences and 2.3

billion tokens. It was originally designed to help identify code tokens or software-related

named entities that appear with natural language sentences, especially on Stack Overflow.

The experimental results on the name entity recognition task on the Stack Overflow dataset

show that fine-tuning over BERTOverflow improves F1-score by more than 10 points com-

pared to using the off-the-shelf BERT. Another example is CodeBERT [58], which is a

bimodal sLLM for both programming languages and natural languages. The experimen-

tal result showed that fine-tuning CodeBERT achieved state-of-the-art performance on two

downstream tasks, i.e., natural language code search and code-to-documentation gener-

ation. Similar to CodeBERT, there are also many sLLMs that have been pre-trained on

programming languages, such as GraphCodeBERT [71] considers the inherent structure

of code.

The second one pays attention to fine-tuning sLLMs for boosting the performance in down-

stream SE tasks [182, 101]. For example, traceability recovery [101], library recognition in

tweets [182] and code search [58]. Zhang et al. [182] extensively evaluated a broad set of

sLLMs, including both general-purpose and domain-specific ones, to solve this program-

ming library recognition task in tweets. Experimental results show that using sLLMs can

outperform the best-performing baseline methods by 5% - 12% in terms of F1-score under

within-, cross-, and mixed-library settings. Lin et al. [101] utilized CodeBERT, a variant

of BERT pre-trained on source code and documents, to recover links between issues and

commits on open-source projects. The results indicate that the architecture that applies
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CodeBERT generates trace links more accurately than the state-of-the-art approaches, e.g.,

RNN. Both these two works demonstrate that sLLMs can benefit the downstream tasks.

Similar to these two works, our work exploits sLLMs to boost the performance for SE.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, our primary objective is to enhance the support provided to software

developers in their daily tasks, with a particular focus on three tasks, ranging from

classification and ranking to generation.

Starting with the SA4SE task, this dissertation conducts an extensive empirical study by

comparing the effectiveness of sLLMs against existing SA4SE tools. Furthermore, this

dissertation revisits this task by performing a comparative analysis between bLLMs and

sLLMs, shedding light on the evolving landscape of SA4SE.

In the second study on the DBRD task, we lay the foundation by creating a benchmark

and presenting an innovative approach that combines bLLMs and REP. This approach

aims to improve the accuracy of DBRD, reducing the duplication of efforts in software

development and enhancing the overall bug reporting and triaging process.

Lastly, in the third study on automatic PR title generation, we demonstrate the superiority
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of BART in generating PR titles, as validated through both automatic and manual evalua-

tions. The generated PR titles have the potential to enhance the clarity and informativeness

of PRs, ultimately streamlining the development process.

6.2 Future Work

This section outlines potential avenues for future work to further advance the research

and findings presented in this dissertation.

Leveraging SA for other Downstream Tasks: The results of SA4SE can serve as a valu-

able resource for many downstream tasks, such as API or library recommendations. By

employing SA4SE methods to gauge the sentiment within various platforms, developers,

library maintainers, and open-source contributors can make informed decisions. These

insights can provide valuable information about library popularity, user satisfaction, and

community sentiment, aiding in library selection and improvement prioritization.

Identifying more Fine-grained Emotions: Other than the sentiment polarities investi-

gated in this work, we are also curious about identifying more fine-grained emotions like

frustration, excitement, or confusion in SE contexts. Recognizing these subtle emotional

undertones can provide a richer understanding of user experiences, developer challenges,

and overall system feedback. This line of inquiry holds promise for enhancing commu-

nication between developers, improving software documentation, and even improving

software products. In the future, we aim to investigate methodologies that can effectively

capture these more fine-grained emotions, potentially leading to more empathetic and

user-centric software development practices.

Leveraging Multi-Modal Information in BRs: Enhancing the accuracy of DBRD can

be achieved by embracing multi-modal information. The inclusion of screenshots and
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potentially other media types such as videos can provide richer context for BRs. Instead

of treating all the text as pure text, considering multi-modal information can lead to more

precise and comprehensive DBRD approaches.

Improving DBRD Efficiency: While existing DBRD techniques have improved detection

accuracy, the response time remains a challenge. Future work can focus on achieving

real-time BR analysis. This involves developing efficient algorithms, utilizing distributed

computing, and optimizing hardware resources to ensure that BRs are processed swiftly.

Reducing bottlenecks in the bug triage process will be crucial in meeting the demands of

fast-paced software development.

Considering More Information in Generating PR Titles: While the dissertation has

predominantly focused on PR descriptions, commit messages, and linked issue titles,

there is an opportunity to incorporate additional sources of information. The hierarchical

code structure within the code changes associated with a PR can offer significant context.

Analyzing how changes fit into the broader code structure, including affected modules,

components, or functions, can yield more informative and contextually relevant PR titles.

These future research directions build upon the foundation established in this dissertation

and aim to provide even more valuable tools and insights for software developers and the

broader SE community.
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